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Abstract This paper presents a general framework for efficiently indexing and
searching large collections of multimedia documents by content. Among
the multimedia information retrieval scenarios that fit into this frame-
work are music, audio, image and 3D object retrieval. Combining the
technique of inverted files with methods from group theory we obtain
space efficient indexing structures as well as time efficient search pro-
cedures for content-based and fault-tolerant search in multimedia data.
Several prototypic applications are discussed demonstrating the capa-
bilities of our new technique.
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1. Introduction
The last few years have seen an increasing importance of multimedia

databases for a wide range of applications. As one major reason, the
availability of affordable high-performance hardware now allows for ef-
ficient processing and storage of the huge amounts of data which arise,
e.g., in video, image, or audio applications. A key philosophy to access-
ing data in multimedia databases is content-based retrieval ([Yoshitaka

∗This work was supported in part by Deutsche Forschungsgemeinschaft under grant CL 64/3



2

and Ichikawa, 1999]), where the content of the multimedia documents is
processed rather than just some textual annotation describing the doc-
uments. Hence, a content-based query to an image database asking for
all images showing a certain person would basically rely on a suitable
feature extraction mechanism to scan images for occurrences of that per-
son. On the other hand, a classical query based on additional textual
information would rely on the existence of a suitable textual annotation
of the contents of all images. Unfortunately, in most cases such an anno-
tation is neither available nor may it be easily extracted automatically,
emphasizing the demand for feasible content-based retrieval methods.

It turns out that many content-based retrieval problems share essen-
tial structural properties. We briefly sketch two of those problems.

Let us first consider a problem from music information retrieval. As-
sume that a music database consists of a collection of scores. That is,
each database document is a score representation of a piece of music
containing the notes of that piece as well as additional information such
as meter or tempo. Now we consider the following database search prob-
lem: Given a melody or, more generally, an arbitrary excerpt of a piece
of music, we are looking for all occurrences of that query or slight vari-
ations thereof in the database documents. The result of such a query
could for example help music professionals to discover plagiarism. A sim-
pler, yet very active application area is to name a tune that is whistled
or hummed into a microphone. As a query result, a user could expect
information on title, composer, and consumer information on an audio
CD containing the corresponding piece of music.

The second problem is concerned with content-based image retrieval.
Consider a database consisting of digital copyrighted images. Assume
that we are interested, e.g., for some legal reasons, in finding all web
pages on the Internet containing at least one of the copyrighted images or
fragments thereof. This problem may be again considered as a database
search problem: Given a (query) image taken from some web page, we
are looking for an occurrence of that image as a subimage of one of the
database images, including the case that the query matches one of those
images as a whole. Extensions to this problem include that we are also
interested in finding rotated, resized, or lower-quality versions of the
original images.

Both of the above problems may be viewed in the following general
setting: A query to a database consisting of a collection of multimedia
documents has to be answered in the sense that certain transformations
(or generalized shift operations) have to be found which transport the
query to its location within the database document. In this tutorial pa-
per, we systematically exploit this principle for the case that admissible
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transformations are taken from a group acting on a set which in turn con-
stitute the database documents. It turns out that this approach leads to
very efficient search algorithms for a large class of content-based search
problems, which are in particular applicable to spatial-, temporal-, or
spatio-temporal retrieval settings ([Yoshitaka and Ichikawa, 1999]).

We briefly summarize the main contributions of our approach:

We develop a general framework for retrieval of multimedia doc-
uments by example. Our technique’s flexibility has been demon-
strated by prototypes in various fields (e.g., music, audio, image,
and (relational) object retrieval).

We propose generic algorithms for query evaluation together with
efficient algorithms for fault-tolerant retrieval which consequently
exploit the structure inherent in the retrieval problems.

In contrast to previously reported approaches, query evaluation
becomes more efficient when the complexity of a query increases.

The concept of partial matches (i.e., a query is only matched to
a part of a document) is an integral part of our technique and
requires no additional storage.

The proposed technique has been successfully tested on a variety of
content-based retrieval problems. We summarize some figures on those
prototypes:

Our PROMS system, for the first time, allowed for efficient poly-
phonic search in polyphonic scores ([Clausen et al., 2000]). E.g.,
queries to a database of 12,000 pieces of music containing 33 mil-
lion notes can be answered in about 50 milliseconds.

Our system for searching large databases of audio signals allows
for both identifying and precisely locating short fragments of au-
dio signals w.r.t. the database. The sizes of our search indexes
are very small, e.g., only 1:1,000–1:15,000 the size of the original
audio data depending on the required retrieval granularity. As an
example, a database of 180 GB of audio material can be indexed
using about 50 MB only, while still allowing audio signals of only
several seconds of length to be located within fractions of seconds
([Ribbrock and Kurth, 2002]).

Index construction may be performed very efficiently. For the
PROMS system, index construction takes only a few minutes,
hence allowing for indexing on the fly. Indexing PCM audio data
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may be performed several times faster than real-time on standard
PC hardware.

In our prototypic image retrieval system containing 3,300 images,
exact sub-image queries require about 50ms response time ([Röder,
2002]). The search index is compressed to 1:6 compared to the
original (JPEG) data.

The paper is organized as follows. In the next section, we discuss sev-
eral motivating examples and give an informal overview on the concepts
of our approach to content-based multimedia retrieval. Those concepts
are introduced formally in Sections 3 and 4. Section 3 deals with a for-
mal specification of documents, queries, the notion of matches, and the
derivation of fast retrieval algorithms. Section 4 introduces two gen-
eral mechanisms to incorporate fault tolerance: mismatches and fuzzy
queries. In Section 5 we present prototypic applications from the fields
of music-, audio-, image-, and object retrieval. Finally, Section 6 gives a
brief overview on related work and suggest some future research direc-
tions.

2. Motivating Examples
The goal of this section is to present three motivating examples that

illustrate the desirability of a unified approach to content-based retrieval.
The first two are concerned with text retrieval tasks, whereas the third
discusses content-based retrieval in score-based music data.

As a first example, suppose we have a collection T = (T1, . . . , TN ) of
text documents each consisting of a finite sequence of words where each
word is contained in a set (i.e., a dictionary) W of all admissible words.
Taking a coarse level of granularity, each text document is preprocessed
in order to extract a set of terms occurring in that document. If T
denotes the set of all conceivable terms, then this preprocessing step
produces a sequence D = (D1, . . . ,DN ) of finite subsets of T , where Di

is the set of terms extracted from the ith document. We may think of
the term set T as a reduced version of W , where unimportant words have
been left out and verbs, nouns, etc. in W have been replaced by their
principal forms, e.g., by means of a stemming algorithm (e.g., sitting �→
sit).

Next, let us think about content-based queries. A usual way of formu-
lating a query is to input a finite set Q of terms to the retrieval system.
Then one possible task is to compute the set HD(Q) of all exact partial
matches, which is the set of all documents containing all of the terms
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specified by Q. More formally, with [1 : N ] := {1, . . . , N},

HD(Q) := {i ∈ [1 : N ] | Q ⊆ Di}. (1)

Note that this is a rather strict decision about the Q-relevance of a
document: if just one q ∈ Q does not occur in Di, then Di is already
considered irrelevant. A more realistic way to estimate relevance would
be a ranking of the documents along the quotients |Q ∩Di|/|Q| ∈ [0, 1].
This quotient equals 1 if and only if Q is a subset of Di.

From the viewpoint of logic, presenting a set Q = {q1, . . . , qn} of
terms to the retrieval system is equivalent to the boolean query q1 ∧
. . .∧ qn which asks for all documents that contain all these terms. More
generally, we can form boolean expressions like (t1 ∧ t2)∨ (t3 ∧¬t4), the
latter asking for all documents containing both the terms t1 and t2 or
the term t3 but not the term t4.

After this brief introduction to content-based queries and different
text retrieval tasks, we are now going to discuss efficient algorithms for
text retrieval. For each term t ∈ ∪N

i=1Di one establishes a so-called
inverted file, which is the (linearly ordered) set HD(t) := {i ∈ [1 : N ] |
t ∈ Di}. Then, for a query Q ⊆ T , the set of all exact partial matches
is obtained by intersecting the inverted files of all elements in Q:

HD(Q) =
⋂
t∈Q

HD(t).

This generalizes to boolean queries. For example, HD((t1 ∧ t2) ∨ (t3 ∧
¬t4)) = (HD(t1) ∩ HD(t2)) ∪ (HD(t3) \ HD(t4)).

The above discussion immediately leads to the following computa-
tional problems: given (linearly ordered) finite sets A and B of integers,
compute their intersection, union and difference, again linearly ordered.
If a and b denote the cardinality of A and B, respectively, then A ∩ B,
A∪B and A\B may be computed with at most a+b comparisons using
a merge technique. If a 	 b then comparing the elements of A one after
another by means of the binary search method (see, e.g., [Cormen et al.,
1990]) with the elements of B causes at most a log b comparisons to solve
each of these problems.

So far we have discussed a rather coarse notion of a match. If for
example the document ID i is an exact partial match w.r.t. the query Q,
then we only know that all terms in Q do also occur in the set of terms
extracted from the ith document. However, we do not know where these
terms occur in the original text document Ti. This in turn is the main
goal of full-text retrieval, where questions are allowed that ask, e.g., for
a document containing the text passage ”to be or not to be.” We discuss
this kind of retrieval next.
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In our second example we consider full-text retrieval where we use
a finer level of granularity. For this, we consider the word sequences
constituting a text document. If W denotes the set of all words then
the ith document is viewed as a sequence Di = (wi0, . . . , wini) over W .
To make this example more comparable to the previous one, we will
identify this sequence with the set {[j, wij ] | j ∈ [0 : ni]}. (Note that
replacing sequences by their corresponding sets means a switch from an
implicit to an explicit specification of the words’ places.) Similarly, a
query like “to be or not to be” would then be identified with the set
{[0, to], [1,be], [2, or], [3,not], [4, to], [5,be]}.

In general, for a query Q = (q0, . . . , qn) ≡ {[j, qj ] | j ∈ [0 : n]}, we are
looking for the set HD(Q) of all pairs (t, i) such that t+Q := {[t+j, qj ] |
j ∈ [0 : n]} is a subset of Di. To obtain all those pairs efficiently we use,
in analogy to the first example, an inverted file HD(w) := {(j, i) | w =
wij}, for each word w that occurs in any of the documents. We claim
that

HD(Q) = ∩n
k=0(HD(qk) − k), (2)

where HD(qk)−k := {(j−k, i) | (j, i) ∈ HD(qk)}. In fact, (j, i) ∈ HD(Q)
iff (q0, . . . , qn) = (wij , . . . , wi,j+n). This is equivalent to (j + k, i) ∈
HD(qk), for all k ∈ [0 : n], i.e., (j, i) ∈ HD(qk) − k, for all k, which
proves our claim. Note that we use square brackets (such as in [1,be])
to denote the elementary objects constituting our documents in order to
avoid confusion with elements of the inverted files (such as (j, i) above)
which are denoted by round brackets.

According to this formula, the list of all solutions is again the inter-
section of all relevant and properly adjusted inverted files. However, for
stop words like the, a, is, to, be, the lists are rather long. To avoid long
lists and to improve the query response time substantially, we consider
instead of W the set of all pairs W2 as our new universe of elementary
data objects. For each pair [v,w] of words we generate the inverted file
HD(v,w) := {(j, i) | [v,w] = [wij , wi,j+1]}. On the one hand, this simple
trick drastically increases the number of inverted files, on the other hand,
the new lists are typically much smaller than the original inverted files.
The query “to be or not to be” can now be processed by the following
intersection (check this!):

HD(to, be) ∩ (HD(or, not) − 2) ∩ (HD(to, be) − 4).

Thus instead of intersecting six long lists when working with W , we now
have to intersect only three small lists. Obviously, this generalizes to
k-tuples of words, for any k.
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After these rather classical examples let us now turn to our third ex-
ample which deals with content-based music information retrieval. The
reader should notice the analogy to full-text retrieval.

Figure 1. A part of J.S. Bach’s Fugue in C major, BWV 846, in the piano roll
notation.

Suppose we have a collection T = (T1, . . . , TN ) of scores. That is,
each Ti is a score representation of a piece of music containing the notes
of that piece as well as additional information such as meter, tempo or
specifications of dynamics. Musical scores in the conventional staff no-
tation may be visualized using the so-called piano roll representation.
Fig. 1 shows the piano roll representation of the beginning of Johann
Sebastian Bach’s Fugue in C major, BWV 846. In this figure, the hor-
izontal axis represents time whereas the vertical axis describes pitches.
Each rectangle of width d located (w.r.t. its left lower corner) at coor-
dinates (t, p) represents a note of pitch p, onset time t, and duration
d. Such a note will be denoted by the triple [p, t, d]. (After a suitable
quantization, we can assume w.l.o.g. that p, t and d are integers.)

Figure 2. A query to the database in the piano roll notation.

Now we consider the following music information retrieval task which
has already been sketched in the introduction: given a fragment of a
melody or, more generally, an arbitrary excerpt of a piece of music,
we are looking for all occurrences of that content-based query in the
collection. As an example consider the query depicted in Fig. 2. In
fact, this query is a part of the fugue’s theme. Assume that we are
looking for all positions where this theme or a pitch-transposed version
thereof occurs. Then, Fig. 3 shows all occurrences of the query within
the excerpt of the fugue given in Fig. 1.
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Figure 3. Bach fugue of Fig. 1. All occurrences of the query in Fig. 2 are highlighted.

To solve such matching problems, we first have to decide which parts
of the complete score information are actually needed. By our experi-
ence, the most important parameters for recognizing a piece of music are
pitch and onset time. In other words, a person will recognize a piece of
music even if it is played in staccato throughout, i.e., disregarding the
notes’ durations. According to this experimental result, the first step is
to extract from each score the pitches and onset times. This results in a
new collection D = (D1, . . . ,DN ) of finite subsets Di of Z

2. A content-
based query is—after a possible preprocessing step—again a finite subset
Q of Z

2. The set HD(Q) of all exact partial matches—when time- and
pitch-shifts are allowed—is thus given by

HD(Q) := {(π, τ, i) ∈ Z
2 × [1 : N ] | (π, τ) + Q ⊆ Di},

where (π, τ) + Q := {[π + p, τ + t] | [p, t] ∈ Q}. If we construct for every
pair [p, t] ∈ Z

2 an inverted file HD([p, t]) := {(π, τ, i) ∈ Z
2 × [1 : N ] |

[π + p, τ + t] ∈ Di}, then

HD(Q) =
⋂

[p,t]∈Q

HD([p, t]).

As in the case of text retrieval, the set of all exact partial matches is
the intersection of all inverted files corresponding to the elements of Q.
Obviously, there are infinitely many inverted files. Fortunately, from just
one list one can recover the other inverted files according to the formula

HD([p, t]) = HD([0, 0]) − (p, t), (3)

where HD([0, 0]) − (p, t) := {(π − p, τ − t, i) | (π, τ, i) ∈ HD([0, 0])}. In
fact, (π, τ, i) ∈ HD([p, t]) iff [π + p, τ + t] ∈ Di iff (π + p, τ + t, i) ∈
HD([0, 0]) iff (π, τ, i) ∈ HD([0, 0]) − (p, t), which proves our claim. Due
to this formula, we only need to store the inverted file HD([0, 0]). The
other lists can easily be computed from it if required. Remarkably, if
HD([0, 0]) is linearly ordered, then so is HD([0, 0]) − (p, t).
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Let us analyze the computational cost of computing all exact partial
matches w.r.t. the query Q using the formula

HD(Q) =
⋂

[p,t]∈Q

(HD([0, 0]) − (p, t)). (4)

As the list HD([0, 0]) contains information about all notes from all scores
in the collection, its size is proportional to the total number of notes in
the collection. At least for large corpora this leads to unacceptable query
response times. So we have to look for alternatives to get shorter lists.

Although Formula (4) looks very similar to Formula (2), there exists
a significant difference concerning the number of independent inverted
files: in our music retrieval scenario this number is one whereas in the
full-text retrieval scenario this number equals the number of different
terms in all documents. Thus text retrieval has the advantage of many
independent inverted files that are typically small as compared to the
storage requirements of the whole collection. Hence it is advantageous
to make sure that many independent inverted files exist also in the music
retrieval scenario.

There are different ways to achieve this goal. The first way is to
reconsider the durations of the notes, resulting in documents Di and Q
over Z

3 where the additional component represents the note duration.
Using shifts (π, τ) + Q := {[π + p, τ + t, d] | [p, t, d] ∈ Q} and inverted
files HD([p, t, d]) := {(π, τ, i) ∈ Z

2 × [1 : N ] | [π + p, τ + t, d] ∈ Di}, we
note that now

HD([p, t, d]) = HD([0, 0, d]) − (p, t). (5)

Hence, the number of independent inverted lists equals the number of
different durations occuring in the score collection. Besides fundamental
difficulties of quantifying the duration, e.g., for staccato or grace notes,
there will be extremely long lists for whole, half, quarter and eighth
notes and these lists will typically be needed in most queries. So this
alternative will generally not be suitable.

A second way of obtaining shorter independent inverted files is to
exploit a user’s prior knowledge. To avoid technicalities, assume that
all pieces of the score collection are in 4/4 meter. Assume furthermore
that each meter is subdivided into 16 metrical positions. When a user
posing a query knows about the metrical position of the query, e.g., that
the query starts at an offbeat, this may be incorporated as follows. We
work with modified inverted files of the form

H ′
D([π, τ ]) := {(p, k, i) | [p + π, 16k + τ ] ∈ Di}
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and note that H ′
D([π, τ ]) = H ′

D([0, τ + 16�]) − (π,−�, 0) (Check this!).
Thus, instead of one independent inverted file we now have 16 indepen-
dent files

H ′
D([0, t]) := {(π, k, i) | [π, 16k + t] ∈ Di}

for t ∈ [0 : 15]. For a query Q containing correct indications of the
metrical positions, our task is to compute the set H ′

D(Q) := {(p, k, i) |
(p, 16k) + Q ⊆ Di} which is equal to the intersection of all H ′

D(q), q
ranging over all elements of Q.

However, this only works if the user provides the retrieval system with
accurate metrical information. If, in addition, the user knows about the
exact pitches, then assuming 128 different pitches (like in the MIDI
format), we now have 2048 independent inverted files

H ′′
D([p, t]) := {(p, k, i) | [p, 16k + t] ∈ Di}

for [p, t] ∈ [0 : 127] × [0 : 15]. In this case, a user has to know both
the exact pitches and the metrical positions. So this second alterna-
tive requires a high degree of user knowledge. One could decrease this
requirement by incorporating fault tolerance. We briefly discuss two
mechanisms for achieving this: mismatches and fuzzy queries.

The first mechanism considers the case that a query is not completely
contained in a document Di. The elements of Q \ Di are called mis-
matches. Using a variant of an algorithm (see Section 4) for computing
the ratios |Q∩Di|/|Q|, one may efficiently determine all documents with
at most k mismatches.

Another possibility is to allow a user to pose fuzzy queries. In our
music scenario, it could be the case that one is unsure about a certain
pitch interval or the exact rhythm. Here, a user can specify alternatives
for one note. Then a fuzzy query is a sequence F = (F1, . . . , Fn) of n
finite sets Fi of alternatives. Such an F is the shorthand for a family of
ordinary queries Q = {q1, . . . , qn} where for each i, qi is allowed to take
arbitrary values of Fi. A document Di is an exact partial match for a
fuzzy query F if Q ⊆ Di, for some Q in this bunch of ordinary queries
corresponding to F. If the Fi are pairwise disjoint, then F consists of∏n

i=1 |Fi| ordinary queries. Although this number might grow rapidly,
there are efficient algorithms to compute all matches, see Section 4.

Finally, let us discuss a third alternative. Instead of notes [p, t] we now
consider pairs of notes ([p, t], [p′, t′]) as our basic objects. As a query Q
in our score scenario typically refers to a contiguous part of the score,
we do not need to store all pairs of Di × Di but only those which are
close to another. Noticing that most rows of a score correspond to one
particular voice each, the storage complexity is still linear in the total
length of the collection.
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pitch

time

pitch

time

Figure 4. Replacing a document D (left) with a subset of D2 (right) consisting of
neighboring objects of D. Elements of D2 are specified by pairs of notes joined by an
arrow.

So documents Di and queries Q are replaced by suitable subsets of Di2
and Q2, respectively. Figure 4 illustrates this procedure. Considering
pairs of notes is advantageous: we now have many independent inverted
files: these are indexed by the pairs ([0, 0], [p, t]) with p ∈ [−127 : 127]
and t ∈ Z. For details see the next section.

Prepared by these motivating examples, we are going to describe a
general concept for multimedia information retrieval. This concept,
worked out in detail in the next section, combines classical full-text
retrieval techniques with methods from group theory.

3. General Concept
Let M be a set whose elements model the elementary data objects.

A document over M is just a finite subset D of M . A collection (or data
base) over M is a finite sequence D = (D1, . . . ,DN ) of documents.

In the classical text retrieval example, M = T is the set of all terms,
whereas Di equals the set of terms extracted from the ith text document.
In the full-text retrieval scenario, M = Z × W is the set of all words
together with positional information. The ith text document Ti is viewed
as a sequence of words. This in turn may be described by the subset
Di = {[j, wij ] | j ∈ [0 : ni]} of M . Finally, in our score retrieval
example, M = [0 : 127] × Z or M = ([0 : 127] × Z)2 is the set of all
(pairs of) notes. The ith score document is then a finite subset of M .
(For technical reasons, in this last example we will replace M by the
supersets Z

2 and (Z2)2, respectively.)
A content-based query—after a possible preprocessing step—is again

a finite subset Q of M . Hence, in our three examples, Q is a set of terms,
a sequence of words, or a set of (pairs of) notes, respectively.

To define more generally shifted versions of a query Q we use the
concept of a group G acting on a set M . Recall that the (multiplicative)
group G acts on the set M if there is a map G×M � (g,m) �→ gm ∈ M
satisfying for all g, h ∈ G and m ∈ M : g(hm) = (gh)m and 1Gm = m.
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In this case, M is also called a G-set. Such a group action defines an
equivalence relation on M :

m ∼ m′ iff ∃g ∈ G : gm = m′.

The equivalence class containing m ∈ M is the so-called G-orbit

Gm := {gm | g ∈ G}.

Hence the G-set M decomposes into the disjoint union of G-orbits. If R
is a transversal of the G-orbits, i.e., a set of representatives containing
exactly one element of each orbit, then

M =
⊔
r∈R

Gr.

By definition, the G-action on M is transitive if there is only one G-orbit,
otherwise the G-action is intransitive.

If G acts on M then G also acts on P (M) := {Q | Q ⊆ M}, the power
set of M , via

gQ := {gq | q ∈ Q},
where g ∈ G and Q ⊆ M . As Q and gQ have the same cardinality,
G acts on the set of all finite subsets of M , i.e., on the documents and
queries over M . Thus the group elements precisely allow us to specify
what is meant by a G-shift of a query. Furthermore, as we will see below,
we can vary the group G to exploit the user’s prior knowledge. With
this concept we can define a first information retrieval task.

Definition 1 (Exact partial (G,D)-matches)
Let D = (D1, . . . ,DN ) be a collection over the G-set M . For a query Q
over M the set of all exact (G,D)-matches is defined as

GD(Q) := {(g, i) ∈ G × [1 : N ] | gQ ⊆ Di}. •

In the text retrieval example, G is the trivial group. Hence there is
no loss of information if we simply replace (g, i) ∈ GD(Q) by i. Thus
GD(Q) ≡ {i ∈ [1 : N ] | Q ⊆ Di} equals the set HD(Q) from equation (1).

In the full-text retrieval example, the additive group G = Z acts on
Z × W by (t, [j, w]) �→ [t + j, w]. In this case, GD(Q) consists of all
pairs (t, i) such that the time-shifted version t + Q of Q is completely
contained in Di.

Finally, in the score retrieval scenario, the additive group G = Z
2 acts

on M = Z
2 by vector addition. By the way, this action is transitive.

Again, GD(Q) is the set of all pairs ((p, t), i) such that (p, t) + Q is
completely contained in the ith document.
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So far, in all examples a commutative group is acting. Here is a
classical example of a noncommutative group action.

A 2D color image I is modeled as a finite subset of R
2 × C, where

[(x, y), c] ∈ I describes the color information c ∈ C of I at position
(x, y) ∈ R

2. Let G denote the group of similarity transformations in R
2.

This noncommutative group is generated by rotations, translations and
uniform scalings. If Q ⊂ R

2×C is a fragment of a 2D color image, then G
acts on such fragments of images by gQ := {[g(x, y), c] | [(x, y), c] ∈ Q}.
Thus gQ is a rotated, translated and rescaled version of Q.

If D is a collection over the G-set M then our index will consist of
(G,D)-inverted files or lists, defined by

GD(m) := {(g, i) ∈ G × [1 : N ] | gm ∈ Di},

for m ∈ M . One easily shows that for a query Q the corresponding set
of all exact partial (G,D)-matches may be computed as the intersection
of all (G,D)-inverted files specified by Q:

GD(Q) =
⋂
q∈Q

GD(q).

Thus to obtain all matches, it suffices to have access to all inverted lists
GD(q). If M or G are infinite or of large finite cardinality, it might
be impossible or impractical to store all inverted lists. However, in a
number of cases, we can overcome this problem. The crucial observation
is that the inverted lists of all elements in one G-orbit are closely related.

Lemma 2 GD(gm) = GD(m)g−1 := {(hg−1, i) | (h, i) ∈ GD(m)}.

Proof. The following chain of equivalences proves our claim:

(h, i) ∈ GD(m) ⇐⇒ hm ∈ Di ⇐⇒ hg−1(gm) ∈ Di

⇐⇒ (hg−1, i) ∈ GD(gm). •

Thus if the multiplication in the group G is not too involved, we can
quickly recover GD(gm) from GD(m), which might lead to dramatic
storage savings. To be more precise, let R be a transversal of the G-
orbits of M . Then every element m ∈ M can be written as m = gmrm

with a uniquely determined rm ∈ R and an element gm ∈ G which is
unique modulo Gm := {g ∈ G | gm = m}, the stabilizer subgroup of
m. By the last lemma it is sufficient to store only the inverted lists
corresponding to the transversal R. Then the remaining lists can be
computed on demand according to the following result.
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Theorem 3 For the set of all exact partial (G,D)-matches w.r.t. the
query Q ⊆ M the following formula holds:

GD(Q) =
⋂
q∈Q

GD(rq)g−1
q .

Proof. Combine GD(Q) = ∩q∈QGD(q) and q = gqrq with the last
lemma. •

How time and space consuming is the computation of all exact par-
tial (G,D)-matches along the formula of the last theorem? Let us first
discuss storage requirements.

Theorem 4 With the notation of the last theorem suppose that the sta-
bilizer subgroups Gm for all m ∈ M are trivial. Then the sum of the
lengths of all (G,D)-inverted lists corresponding to a transversal R of
the G-orbits of M equals the sum of the cardinalities of all documents:

∑
r∈R

length(GD(r)) =
∑

i∈[1:N ]

|Di|.

Proof. As all stabilizers are trivial, each m ∈ M has a unique decom-
position m = gmrm with gm ∈ G and rm ∈ R. Thus each m ∈ Di

contributes exactly one entry to exactly one list: (gm, i) ∈ GD(rm). •
If m ∈ Di has a nontrivial stabilizer Gm and if m = gmr with gm ∈ G

and r ∈ R, then m contributes exactly |Gm| entries to the inverted
list GD(m), namely all pairs of the form (gmg, i) with g ∈ Gr. So if
all stabilizers are small (|Gm| � c, say) then a slight modification of
the above reasoning shows that the above equality can be replaced by∑

r∈R length(GD(r)) � c·
∑

i∈[1:N ] |Di|. If there are large stabilizers, then
the above formula should not be applied directly. Instead, a redesign of
the set M of elementary data objects might be helpful to force trivial
stabilizers. This trick will be discussed below.

In what follows we concentrate on the case that all stabilizers are
trivial. How fast can we compute an intersection like ∩q∈QGD(rq)g−1

q ?
To settle this question let us first discuss the problem of generating the
inverted lists. To accelerate the intersection task, we first define a lin-
ear ordering on the group G and suppose that we have an algorithm
that efficiently decides for g, h ∈ G whether g = h, g < h, or g > h.
For the moment, we also assume that we know a transversal R of the
G-orbits of M and that we know an efficient algorithm for computing
M � m �→ (gm, rm) ∈ G × R, where m = gmrm. Under these assump-
tions we may, for each element in all the documents, efficiently compute
the corresponding inverted file: m = gmrm ∈ Di yields the entry (gm, i)
in GD(rm). Finally, we linearly order the entries in each inverted file
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according to their first component, which is an element of the linearly
ordered group G. Note that not all G-orbits have to be involved in the
documents of a particular database D1, . . . ,DN . Suppose that R′ ⊆ R is
minimal with ∪r∈R′Gr ⊇ ∪i∈[1:N ]Di, then we have a total of |R′| inverted
files. If the group operation is compatible with the linear ordering of the
group, i.e., x < y implies xg < yg, for all x, y, g ∈ G, then the linear
ordering of the inverted files GD(r) for r ∈ R can be used directly when
computing GD(Q) using the formula GD(Q) = ∩q∈QGD(rq)g−1

q . Accord-
ing to our assumption, each GD(rq) is linearly ordered, and hence so is
GD(rq)g−1

q . Consequently, we have to compute the intersection of n lin-
early ordered lists of length �1 � . . . � �n, say. If λi is the cardinality of
the intersection of the first i lists, then computing GD(Q) with the binary
method requires at most

∑n−1
i=1 λi log �i+1 � (n− 1)�1 log �n comparisons

in G as well as at most n inversions and �1 + . . . + �n multiplications in
G.

Surprisingly, a similar complexity result can even be obtained when
the linear ordering of G is not compatible with the multiplications in G.
This is based on the following simple but very useful observation.

Lemma 5 Let a, b be elements and A,B subsets of the group G. Then
Aa ⊥ Bb = (Aab−1 ⊥ B)b = (A ⊥ Bba−1)a, for ⊥∈ {∩,∪, \}.

Proof. Straightforward. •
In the worst case, both Aa and Bb are not linearly ordered in contrast

to A and B. Nevertheless, when computing, e.g., the intersection Aa∩Bb
we can use either the linear ordering of A by computing (A ∩ Bba−1)a
or that of B by computing (Aab−1 ∩ B)b.

Theorem 6 Let Q be a query of size n, Q = {q1, . . . , qn}. Suppose that
the lists GD(qi) are ordered according to their lengths �1 � . . . � �n,
where �i := |GD(qi)|. For j ∈ [1 : n] let λj denote the cardinality of the
intersection ∩i∈[1:j]GD(qi). Given the linearly ordered lists GD(r) for
all r ∈ R, the list GD(Q) of all exact partial (G,D)-matches of Q can
be computed with

∑n−1
i=1 λi log �i+1 � (n − 1)�1 log �n comparisons in G,

along with n decompositions qi �→ (gi, ri) ∈ G×R satisfying qi = giri, n
inversions gi �→ g−1

i , n − 1 multiplications g−1
i gi+1, and

∑n
i=1 λi � n�1

multiplications in G.

Proof. Let qi = giri with gi ∈ G and ri ∈ R. Then

GD(Q) =
n⋂

i=1

GD(qi) =
n⋂

i=1

GD(ri)g−1
i .
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According to the last lemma we compute GD(Q) as follows (here shown
for the case n = 3 using the shorthand Hi := GD(ri)):

H1g
−1
1 ∩ H2g

−1
2 ∩ H3g

−1
3 = ((H1g

−1
1 g2 ∩ H2)g−1

2 g3 ∩ H3)g−1
3 .

This formula suggests the following procedure: first, compute all de-
compositions qi �→ (gi, ri). Then invert all gi and compute all g−1

i gi+1.
Afterwards, inductively compute linearly ordered sets

Λj := (
⋂

i∈[1:j]

Hig
−1
i )gj .

Note that Λ1 = H1 is already linearly ordered. As Λj+1 = Λjg
−1
j gj+1 ∩

Hj and Hj is linearly ordered, we can compute this intersection using
the binary method. We finish the proof by mentioning that Λj has
cardinality λj and Λng−1

n equals GD(Q). •
Roughly speaking, the last theorem tells us that the number of oper-

ations to compute GD(Q) is at most the product of the cardinality of Q,
the length of the shortest list and the logarithm of the longest list among
all lists corresponding to Q. Hence it is profitable to have many short
lists. But what do we do if G acts transitively on M? In this case one
should look at intransitive G-sets, closely related to M . Here are two ex-
amples: if n � 2 then G acts on P�n(M) := {X ⊆ M | 0 < |X| � n} by
gX := {gx | x ∈ X} and on Mn by g(m1, . . . ,mn) := (gm1, . . . , gmn).
Both actions are intransitive. The next result shows a close connection
between exact partial matches in various G-sets.

Theorem 7 Let D = (D1, . . . ,DN ) denote a document collection over
the G-set M . This induces new collections Dn := (Dn

1 , . . . ,Dn
N ). Simi-

larly, for a query Q ⊆ M and P�n(D) := (P�n(D1), . . . ,P�n(DN )) we
associate the queries P�n(Q) ⊆ P�n(M) and Qn ⊆ Mn. The corre-
sponding sets of exact partial matches are equal:

GD(Q) = GP�n(D)(P�n(Q)) = GDn(Qn).

Proof. For (g, i) ∈ G × [1 : N ] we have

(g, i) ∈ GD(Q) ⇐⇒ gQ ⊆ Di

⇐⇒ ∀X ∈ P�n(gQ) = gP�n(Q) : X ∈ P�n(Di)
⇐⇒ gP�n(Q) ⊆ P�n(Di)
⇐⇒ (g, i) ∈ GP�n(D)(P�n(Q)).

This proves the first equality. The second equality follows in a similar
way using (gQ)n = gQn. •
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It should be clear that the above intransitive G-actions are just two
generic constructions which are available in every case. Depending on a
particular application one will possibly succeed with smaller G-sets, as,
e.g., the action on Pn(M) = {X ⊆ M | |X| = n} instead of P�n(M) =
{X ⊆ M | 0 < |X| � n}.

Here are some specific examples. G = (R3,+) acts transitively on
M := R

3 by vector addition. The induced actions of G on both P2(M)
and M2 are intransitive. In fact, the G-orbit of {x, y} ∈ P2(M) is
characterized by ±(x − y), whereas the G-orbit of (x, y) ∈ M2 is char-
acterized by x− y. Thus if the documents consist of finite subsets Di of
R

3 and the group of all translations is the group in question, then it is
profitable to view pairs or 2-sets of vectors in R

3 as the new elementary
data objects. If, however, the group Gs of all similarity transformation in
3-space (generated by all translations, rotations and uniform scalings)
is the group of choice, then M2 decomposes only into two Gs-orbits
represented by ([0, 0, 0], [0, 0, 0]) and ([0, 0, 0], [0, 0, 1]), respectively. Fur-
thermore, Gs acts transitively on P2(M). However, P3(M) decomposes
into many Gs-orbits. These orbits correspond to the classes of congruent
triangles in Euclidean 3-space. Thus if G = Gs then one should switch
from M = R

3 to P3(M). Besides many Gs-orbits by this switch we
also obtain small stabilizers. In fact, all stabilizers are isomorphic to a
subgroup of the dihedral group of order 6.

A switch from M to Pk(M) has the drawback that a document Di ⊆
M with di elements has to be replaced by the new document Pk(Di)
which consists of

(di
k

)
elements. Fortunately, in most applications a

query Q will typically be not a random but a structured subset of M .
For example, if (M,d) is a metric space and θ > 0 a prescribed constant,
a possible property of Q could be its θ-connectedness, i.e., there is an
enumeration of Q, Q = {q1, . . . , qn}, such that d(qi−1, qi) � θ, for all i ∈
[2 : n]. Thus instead of Pk(Di) in this case it is sufficient to work with the
typically much smaller set Di,k,θ := {X ∈ Pk(Di) | X is θ-connected}. A
query Q = {q1, . . . , qn} with 0 < d(qi−1, qi) � θ should then be replaced
by Q′ = {{qλk+1, . . . , q(λ+1)k} | 0 � λ � �n/k�} ∪ {{qn−k+1, . . . , qn}}.

4. Fault Tolerance
So far, we have mainly discussed exact partial matches. Typically,

there are many sources of impreciseness. Think, e.g., of a non profes-
sional user humming a melody into a microphone. Another example
could be the search in a database of signals where the queries consist of
noisy or lossy compressed versions of the original signals. In all of those
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cases, a certain degree of fault tolerance is required. Now we will discuss
two general kinds of fault tolerance: mismatches and fuzzy queries.

We start with mismatches. Let Q be a query and D a document over
M . The elements of Q∩D form the matching part, whereas the elements
in Q that do not belong to D are called the mismatches. Thus for a fixed
non-negative integer k and a query Q the set

Gk
D(Q) := {(g, i) ∈ G × [1 : N ] | |gQ \ Di| � k}

specifies all partial (G,D)-matches with at most k mismatches. Obvi-
ously, G0

D(Q) equals GD(Q). For k > 0 and (g, i) ∈ Gk
D(Q) the trans-

formed query gQ is contained in Di with up to k mismatching elements.
Fig. 5 illustrates the concept of mismatches.

��
��
��

��
��
����
��
��

��
��
��

Q D

?

Figure 5. A query Q (left) is matched to a certain location of a document D (middle)
using a shift by g. On the right, the matching positions D ∩ gQ are represented by
gray boxes, whereas the two mismatches gQ \ D are marked by dashed boxes.

To determine Gk
D(Q), we use a dynamic programming approach. Let

Q = {q1, . . . , qn} and define Gj := GD(qj) as well as Γj := G1 ∪ . . .∪Gj.
We inductively define credit functions Cj: Γj → Z as follows. Γ1(γ) :=
k + 1, for every γ ∈ Γ1. For 2 � j � n we define

Cj(γ) :=

⎧⎨
⎩

Cj−1(γ) if γ ∈ Γj−1 ∩ Gj

Cj−1(γ) − 1 if γ ∈ Γj−1 \ Gj

k + 2 − j if γ ∈ Gj \ Γj−1.

Theorem 8 The elements of Γn with a positive credit are just all partial
(G,D)-matches with at most k mismatches:

Gk
D(Q) = {γ ∈ Γn | Cn(γ) > 0}.

Proof. Let (g, i) ∈ Γj and Qj := {q1, . . . , qj}. By induction on j we
show that Cj(g, i) = k + 1 − |gQj \ Di|. The start j = 1 is clear. To
prove the inductive step (j − 1 → j) we distinguish three cases.

Case 1: (g, i) ∈ Γj−1 ∩ Gj . As gqj ∈ Di, gQj \ Di = gQj−1 \ Di.
Thus Cj(g, i) := Cj−1(g, i) = k + 1 − |gQj−1 \ Di| = k + 1 − |gQj \ Di|.
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Case 2: (g, i) ∈ Γj−1 \Gj . As gqj �∈ Di, |gQj \Di| = |gQj−1 \Di|+1.
Thus Cj(g, i) := Cj−1(g, i) − 1 = k + 1 − (|gQj−1 \ Di| + 1) = k + 1 −
|gQj \ Di|.

Case 3: (g, i) ∈ Gj \ Γj−1. Then gqj ∈ Di, but gq� �∈ Di, for all
� ∈ [1 : j − 1]. Hence |gQj \ Di| = j − 1. Thus Cj(g, i) := k + 2 − j =
k + 1 − (j − 1) = k + 1 − |gQj \ Di|.

As Qn = Q, we get Cn(g, i) = k + 1 − |gQ \ Di|, for every (g, i) ∈ Γn.
Thus Cn(g, i) > 0 iff |gQ \ Di| � k, i.e., (g, i) ∈ Gk

D(Q). •
To perform a complexity analysis of k-mismatch search, we first note

that Cj(γ) � Cj−1(γ), for all γ ∈ Γj−1. Hence in a practical implemen-
tation we can replace Γj by Γj := Γj \ {γ ∈ Γj−1 | Cj−1(γ) � 0}. Then
Γj = Γj , for all j ∈ [1 : k +1] and Γ1 ⊆ Γ2 ⊆ . . . ⊆ Γk+1 ⊇ Γk+2 ⊇ . . . ⊇
Γn. Let �j and µj denote the lengths of Gj and Γj, respectively. With
Lemma (3.5) and a similar technique as in the proof of Theorem (3.6)
we can compute Gk

D(Q) with at most
∑n−1

j=1 min{�j+1 log µj , µj logj+1} �
L log µk+1 comparisons, where L denotes the total length of all involved
lists. In addition, we have to perform 2n +

∑n−1
j=1 min{�j+1, µj} multi-

plications or inversions in the group.
Let us now turn to fuzzy queries. Recall that a fuzzy query over M

consists of a sequence F = (F1, . . . , Fn) of n finite sets Fi of alternatives.
We associate to such an F a family of ordinary queries

Q(F) := {{q1, . . . , qn} | ∀i : qi ∈ Fi}.

The set GD(F) := {(g, i) | ∃Q ∈ Q(F) : gQ ⊆ Di} specifies the set of all
exact partial (G,D)-matches w.r.t. the fuzzy query F. Obviously, GD(F)
is the union of all GD(Q), where Q ranges over all ordinary queries asso-
ciated to F. As already mentioned, if the Fi are pairwise disjoint, then
F consists of

∏n
i=1 |Fi| many ordinary queries. So, the naive algorithm

that separately computes sets GD(Q) for each Q ∈ Q(F) and finally
merges those sets is rather inefficient. Fortunately, the following result
indicates an efficient algorithm to compute GD(F).

Theorem 9 Let D = (D1, . . . ,DN ) be a collection of documents over
the G-set M . If F = (F1, . . . , Fn) is a sequence of subsets of M then the
set GD(F) of all exact partial (G,D)-matches w.r.t. the fuzzy query F
may be computed using the following formula

GD(F) =
⋂

j∈[1:n]

(
⋃

q∈Fj

GD(q)) =
⋂

j∈[1:n]

(
⋃

q∈Fj

GD(rq)g−1
q ).

Proof. (g, i) ∈ GD(F) iff gQ ⊆ Di, for some Q ∈ Q(F). Equivalently,
there exists an element qj ∈ Fj satisfying gqj ∈ Di, for all j ∈ [1 : n],
i.e., (g, i) ∈ ∪qj∈FjGD(qj), for all j, proving our claim. •
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The complexity analysis for computing GD(F) is straightforward and
left to the reader. It turns out that GD(F) may be computed with a
number of comparisons which is—modulo logarithmic factors—linear in
the total number of entries in all involved lists.

To incorporate prior user knowledge, we consider subgroups U < G.
Then, for a transversal R � 1G of U ’s cosets in G we have G = �r∈RUr.
Using this decomposition, G- and U -inverted lists are connected by

GD(m) =
⊔
r∈R

UD(rm)r,

for each m ∈ M . Then, a speed-up in query processing when restricting
ourselves to subgroups U < G may result from the fundamental property

GD(Q) =
⊔
r∈R

UD(rQ)r,

for all Q ⊆ M . Hence, GD(Q) consists of many lists of the form UD(rQ)r.
Now, assuming prior knowledge about the coset of a match g ∈ G w.r.t.
U , as in the above example where a user knows about the exact metrical
position of a query, we only need to determine the list for the case r = 1G,
i.e., UD(Q).

5. Applications, Prototypes, and Test Results
In this section we give an overview on several applications of the pro-

posed indexing and search technique. A more detailed treatment for
the case of music retrieval may be found in our related work ([Clausen
and Kurth, 2003]). We describe prototypic implementations and give
some test results demonstrating time- and space-efficiency of the pro-
posed algorithms. Recall that for each application we have to specify an
underlying set M of elementary objects, a group G operating on this set,
and a transversal R ⊂ M of G-orbits to specify the inverted file index
{GD(r) | r ∈ R}.

5.1 Content–Based Music Retrieval
Score-based polyphonic search has been used as a running example

within this paper. In our PROMS-system ([Clausen et al., 2000]) we
used the set M := Z × [0 : 127] of notes consisting of onset-times and
MIDI-pitches. The search is carried out w.r.t. the groups G := (Z,+)
and V := (16Z,+) of time-shifts, where G shifts by metrical positions
and V by whole measures each consisting of 16 metrical positions. As
discussed above, the latter models prior knowledge about the metrical
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position of a query within a measure. The corresponding transversals R
are defined as above.

Our database consists of 12,000 classical pieces of music given in the
MIDI format. The pieces consist of a total of about 33 million notes.
Response times for queries of various lengths are summarized in Ta-
ble 1. The response times for each query length were averaged over 100
randomly generated queries. As the table demonstrates, our query pro-
cessing is very fast. In addition, the index requires only a small amount
of disk space and indexing of 330 MB of polyphonic music takes only
40 seconds. The uncompressed index requires 110 MB of disk space.
Compressing the inverted lists using Golomb coding results in reducing
the space requirement to 22 MB.

a 4 8 12 16 20 30 50 100

b 51 86 92 97 100 107 125 159
c 1 5 7 10 12 19 31 64

Table 1. Average total system response time (row b) in ms for different numbers
of notes per query (row a). Row c: Disk access time for fetching inverted lists.
(Pentium II, 333 MHz, 256 MB RAM).

5.2 Audio Identification
The task of audio identification may be described as follows. Given

a short part q of an audio track and a database x1, . . . , xN of full-size
audio tracks, locate all occurrences of q within the database tracks. In
this, a pair (t, i) determines an occurrence of q in xi iff q = xi[t : t+ |q|−
1]. Note that this problem may be stated in terms of our group-based
approach since an audio signal s : Z → R may be interpreted via its
graph as a subset S ⊂ Z × R where G = (Z,+) operates by addition in
the Z- (time) component. For robustness- and space-efficiency reasons,
audio signals are preprocessed using a G-invariant feature extractor F :
R
� → P(Z × X), where X denotes a set of feature classes (in this

case G-invariance denotes the usual time-invariance). As an illustration
we sketch a feature extractor which extracts significant local maxima
from a smoothed version of a signal. For a detailed treatment of more
robust feature extractors, we refer to [Ribbrock and Kurth, 2002]. F will
be composed from several elementary operators which are each maps
on the signal space, i.e., maps R

� → R
�. First, an input signal s is

smoothed by linear filtering. The corresponding operator is Cf [s] : n �→∑
k∈�f(k)s(n − k), where f denotes a signal of finite support. Next,
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K-significant local maxima are extracted by an operator

MK [x] : n �→

⎧⎨
⎩

x(n) if x(n − K) < . . . < x(n) ∧
x(n) > . . . > x(n + K),

0 otherwise.

The resulting signal is again processed by an operator M ′
K ′ extracting

local maxima. M ′
K ′ is defined exactly as MK , but regards only the sup-

port of the input signal. M ′
K ′ usually returns a very sparse output signal.

The operator ∆ assigns to each non-zero position of an input sequence
the distance to the previous nonzero position (provided existence), and
zero otherwise. Finally, let Q|X| denote an, e.g., linear, quantizer which
reduces a signal’s amplitude to |X| feature classes. Note that Q|X| is
an operator R

�→ P(Z ×X) which in addition to quantization discards
zero-positions of a signal. Then our feature extractor may be written as
F := Dc ◦ ∆ ◦ M ′

K ′ ◦ MK ◦ Cf . In an example we could choose K = 5,
K ′ = 3, and X = [1 : 50]. To construct our search index, we calculate
F [xi] ⊆ Z×X for each signal xi of our database. In this {[0, x] | x ∈ X}
serves as a transversal for index construction.

We briefly summarize some results of our extensive tests in the au-
dio identification scenario. Our database consists of 4500 full-size audio
tracks. This approximately amounts to 180 GB of original data or 13
days of high quality audio. Using the above significant maxima as fea-
tures, we obtain an (uncompressed) index size of about 128 MB which
is a compression ratio of about 1:1,400 as compared to the original data.
Using different feature extraction methods, the index size may be further
reduced to sizes of 1:5,000 or even lower. The query times range from
only a few milliseconds (higher quality queries) to about one second.
The required length of a query signal depends on the feature extractor
and ranges from a few fractions of a second (significant maxima features)
to 5-15 seconds (robust features and low quality queries) ([Clausen and
Kurth, 2003]).

5.3 Content-Based Image Retrieval
In content-based 2D- or 3D-retrieval we are interested in finding pos-

sibly translated, rotated, or (uniformly) scaled versions of a query object
in an underlying database. In this overview we shall consider transla-
tions and rotations only. Hence, the groups of interest are the group
Tn of translations in R

n, the orthogonal group On, and the group of
Euclidean motions En := Tn � On.

In content-based image retrieval, we are working with 2D images D ⊂
R

2×N = P and are hence interested in the groups T2 and E2. Assume a
suitable feature extractor yielding a set of features F (D) ⊂ R

2×X for an
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image D. T2 acts on P ’s first two components as described above. Hence,
after feature extraction, we may create an index based on the transversal
{[0, 0, x] | x ∈ X} ⊂ P . In our extensive tests described in [Röder,
2002] we investigated several kinds of feature extractors including corner
detectors, gray value statistics and histograms.

Looking at retrieval under the group E2 acting on 2D points from P ,
we face the problem that each point x ∈ R

2 is mapped to any other
point y ∈ R

2 by infinitely many elements from E2, resulting in inverted
lists of infinite size. Hence we resort to indexing line segments, which
are modeled by the set P2(M) := {L ⊂ M | |L| = 2} of all two–
element subsets of R

2. Using M ′ := P2(R2) × X the line segments
{[(0, a), (0,−a), x] | x ∈ X,a � 0} serve as a transversal for indexing.
In [Röder, 2002], several types of features were tested in the latter set-
ting.

5.4 Searching 3D-Scenes
We investigated content-based search in 3D scenes for the case of

a database of VRML (Virtual Reality Modeling Language) documents
([Mosig, 2001]). To obtain feasible inverted lists, the elementary objects
were chosen to be all 3-sets in R

3, i.e., M = P3(R3), interpreted as the
sets of all triangles in R

3. Hence for indexing, all VRML documents
were converted into documents consisting of triangles only. Indexing
was performed for the groups T3 of 3D translations and for the group E3

of Euclidean motions in R
3. As a transversal of the E3-orbits we chose

all sets of triangles with the origin as the center of gravity. Additionally,
each representative is rotated such that one specific edge runs in parallel
to the x-axis, this edge depending on the triangle having one, two, or
three different side lengths. This way, one obtains a finite set of inverted
lists for this application.

Fig. 6 illustrates the concept of 3D-retrieval using an underlying toy-
database of 3D-objects (on the left). The top of the figure shows a part
of an object which is used as a query to the database. An index-based
search results in one object of the database matching the query (on the
right). The position of that object matching the query is highlighted.

6. Related Work and Future Research
The techniques presented in this paper are related to work from across

several communities. In this section we try to establish the most impor-
tant relations to previous as well as ongoing research efforts.

From a classical database point of view, multimedia data may be
modeled using a relational framework. In the usual approach, mul-
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Figure 6. Toy database of 3D-objects (left), query object (top), and matching
database object (right). The matching position is highlighted.

timedia documents are preprocessed yielding certain feature vectors.
The extracted features are then suitably stored in tables of a relational
database ([Santini and Gupta, 2002]). Using relations, it is possible to
model complex object dependencies like spatial constraints on regions
in an image. Efficient retrieval methods have been proposed using ap-
proximate search like hill climbing ([Papadias, 2000]). Although our
approach may be extended to a relational setting by introducing per-
mutation groups, the methods proposed in this paper were primarily
developed to exploit the structure of the underlying object set M and
the group G acting on M (e.g., musical documents are structured by
specific time- and pitch- intervals between single notes which are not
changed by the group action). In this light, our model constitutes a
special case of the general relational setting which, however, allows for
very efficient query evaluation.

An important issue in multimedia indexing is the use of multidimen-
sional access structures like k-d- or R*-Trees ([Lu, 2002]). Popular in-
dexing approaches map multimedia documents such as time series to
higher dimensional feature sequences and use multidimensional access
structures for searching in those structures ([Faloutsos, 1996]). In our
approach we, as far as possible, tried to avoid higher dimensional features
in order to avoid problems resulting from the dimensionality curse. In
indexing audio this became, e.g., possible by exploiting the fixed tempo-
ral relationships between the features. On the other hand, when dealing
with more complex groups (e.g., the group of Euclidean motions in 3D
leads to a 6-parameter representation for each element), our approach is
also dependent on efficient algorithms for higher dimensional range and
nearest neighbor search ([Agarwal, 1997]).

Specializing to time-series, there has been considerable recent interest
in searching a query sequence in large sets of times–series w.r.t. various
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distance measures. Examples are Euclidean, �p, or dynamic time warp-
ing distances ([Keogh, 2002, Moon et al., 2002]). Whereas our approach
has up to now only been applied to audio signals, its high performance
suggests an extension to include general time-series search under the
latter distance measures. For the particular case of audio identification,
several methods suitable for large data collections have been proposed
recently. Among those, the hashing algorithms proposed by ([Haitsma
et al., 2001]) are the most similar to our approach, as hash tables are
related to inverted files. Our approach has the advantage of needing sig-
nificantly less memory for storing the index (about 100 MB as compared
to 1–2 GB) with otherwise comparably (fast) performance data.

In music retrieval, most of the early work has concentrated on sim-
ilarity based retrieval of melodies, see, e.g., [Uitdenbogerd and Zobel,
1999]. For a long time, retrieval in polyphonic music (see, e.g., [Lem-
ström and Perttu, 2000]) already suffered from a lack of suitable data
modeling. Our technique led to a breakthrough in allowing to model
as well as efficiently search polyphonic music ([Clausen et al., 2000]).
As our approach is up to now mainly focused on modeling and efficient
retrieval, the use of music similarity measures is a natural challenge for
future work.

An approach which is similar in spirit to our general technique is
geometric hashing for object recognition proposed in Computer Vision,
see [Wolfson and Rigoutsos, 1997]. This approach shares the modeling
of shift operations which are considered for 2D/3D settings as well as
the exploitation of the data’s structural (geometric) properties. In our
approach the data modeling is more general, which yields advantages in
designing more efficient fault-tolerant retrieval algorithms.

An extension of our approach ([Clausen and Mosig, 2003]) including
general distance measures between query and matching position leads
to (shape-) matching problems which have been extensively treated in
the area of computational geometry ([Veltkamp, 2001]). It will be a
great challenge for future work to try to combine our approach, which is
more tuned for use with larger datasets, with the sophisticated geometric
matching techniques.

Many approaches to content-based image retrieval have been proposed
in the last years, among which perhaps IBM’s QBIC system (Query by
Image Content) is the most popular. In comparison to those, a consid-
erable advantage of our technique is the natural integration of partial
matches and the ability to locate queries as subimages of database im-
ages at no additional cost. An interesting direction is the Blobworld
approach by [Carson et al., 1999], of region-based image representation
and retrieval, where image descriptors are created from a prior segmen-
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tation into similarly textured regions. It would be very interesting to
combine such texture descriptors with our approach to spatial indexing.
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