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How wonderful are the things the Lord does! All who are delighted with them
want to understand them.

—Good News Bible, Psalm 111:2

Abstract The main goal of the paper is to show that commutative hypercomplex
algebras and Clifford algebras can be used to solve problems of multi-
color image processing and pattern recognition in a natural and effective
manner.
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1. Introduction
The concept of color and multispectral image recognition connects the

topics we consider in this work. The term “multispectral (multicolor,
multicomponent) image” is defined for an image with more than one
component. An RGB image is an example of a color image featuring
three separate image components R(red), G(green), and B(blue). We
know that primates and animals with different evolutionary histories
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have color visual systems of different dimensionality. For example, the
human brain uses three channel (RGB) images to recognize color (RGB)-
images. Primates have dichromacy and trichromacy visual systems, and
they can use various 2D and 3D channels for the same purpose. Non-
primates have monochromacy and dichromacy visual systems. Images
of such systems are real—or complex—valued functions. Reptiles have
multichromacy visual systems. For example, the tortoise visual system
has five types of color photoreceptors (R,G,B, DC,UV). Shrimps have
the biggest known dimension of the visual system. They use ten spectral
types of photoreceptors in their eyes to recognize fine spectral details.
Our approach to multicolor image processing is to use so-called multiplet
(multicolor or hypercomplex) numbers [1]–[7] to describe multicolor im-
ages and to operate directly on multi-channel images as on single-channel
multiplet-valued images. In the classical approach every multicolor pixel
(in particular, color pixel) is associated to a point of a kD multicolor vec-
tor space (to a point of a 3D RGB vector space for color images). In
our approach, each image multicolor pixel is considered not as a kD vec-
tor, but as a multiplet (triplet) number, and multicolor (color) space is
identified with the so-called multiplet (triplet) algebra. Note that both
these assumptions (vector and hypercomplex natures of multicolor im-
ages) are only hypotheses. We have no biological evidence in the form
of experiments that would verify that the brain actually uses any of the
algebraic properties arising from structures of the vector spaces or the
multiplet (triplet) algebra. It is our aim to show that the use of Clifford
algebras fits more naturally to the tasks of multicolor image processing
and recognition of multicolor patterns than does the use of color vec-
tor spaces. We give algebraic models of animals’ visual systems using
different hypercomplex and Clifford algebras. Our hypotheses are

1 Brains of primates operate with hypercomplex numbers during im-
age processing and recognition.

2 Brains use different algebras on two levels (retina and Visual Cor-
tex) for two general goals: image processing and pattern recog-
nition, respectively. Multicolor images appear on the retina as
functions with values in a multiplet kD algebra (k-cycle algebra)
where k is the number of image spectral channels. But multicolor
images in an animals’ Visual Cortex (VC) are functions with values
in a 2k-D Clifford algebra.

3 Visual systems of animals with different evolutionary histories use
different hypercomplex algebras for color and multicolor image pro-
cessing.
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One of the main and interesting problems of information science is clar-
ification of how animals’ eyes and brain recognize objects in the real
world. Practice shows that they successfully cope with this problem
and recognize objects at different locations, of different views and illu-
mination, and with different degrees of blurring. But how is it done by
the brain? How do we see? How do we recognize moving and chang-
ing objects of the surrounding world? A moving object is fixed in the
retina as a sequence of different images. As in the famous aphorism
of Heraclitus, who pointed out that one cannot step into the same
river twice, we literally never see the same object twice. No individual
image allows reaching a conclusion about the true shape of the object.
This means that a set of sequential images appearing in the retina must
contain a constant “something,” thanks to which we see and recognize
the object as a whole. This constant “something” is called invariant.
For example, all letters ‘F’ in Fig. 1 we interpret as the same for dif-
ferent geometric distortions. This fact means that all geometrically

Figure 1. Geometrical distorted versa of letter ‘F’

distorted letters ‘F’ contain invariant features, which are not changed,
when the shape of ‘F’ is changed. Our brain can extract these invari-
ant features. In Fig. 2 we see hyperbolic (non-Euclidean) motions of
grey-level mice and color fish. All transformed figures are interpreted as
being the same. This fact means that all figures contain invariant fea-
tures with respect to hyperbolic motions (and color transformations),
and our brain can extract these invariant features from images, too. So,
we see, we live in 3D Euclidean space but our brain can calculate invari-
ants of images with respect to non-Euclidean transformations. In order
for an artificial pattern recognition system to perform in the same way
as any biological visual system, the recognition result should be invari-
ant with respect to various transformation groups of the patterns such
as translation, rotation, size variation, and change in illumination and
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Figure 2. Non-Euclidean motions

color. The present work describes new methods of image recognition
based on an algebraic-geometric theory of invariants. In this approach,
each color or multicolor pixel is considered not as a kD vector, but as a
kD hypercomplex number (k is the number of image spectral channels).
Changes in the surrounding world which cause object shape and color
transformations are treated not as matrix transforms, but as the action
of some Clifford numbers in physical and perceptual spaces. We shall
present some clues that Nature gives us about the role and importance
of computing with hypercomplex numbers. We wish to review some of
the reasons why such a state of affairs is necessary from a computa-
tional point of view. One can argue that Nature has also learned to
utilize (through evolution) properties of hypercomplex numbers. Thus,
the Visual Cortex might have the ability to operate as a Clifford algebra
device. We don’t agree with Kronecker that “The Lord created the
integers and the rest is the work of man.” We think that the Lord knew
Clifford algebras, and he was the first engineer who used these algebras
to design animals’ visual systems.

2. Clifford algebras as models of physical spaces

2.1 Algebras of physical spaces
We suppose that a brain calculates some hypercomplex-valued invari-

ants of an image when recognizing it. Hypercomplex algebras generalize
the algebras of complex numbers, quaternions and octonions. Of course,
the algebraic nature of hypercomplex numbers must correspond to the
spaces with respect to geometrically perceivable properties. For recog-
nition of 2D, 3D and nD images we turn the spaces R2, R3 and Rn into



Clifford Algebras as a Unified Language 5

corresponding algebras of hypercomplex numbers. Let “small” nD space
Rn be spanned by the orthonormal basis of n space hyperimaginary units
Ii, i = 1, 2, . . . n. We assume

I2
i =

⎧⎨
⎩

+1 for i = 1, 2, . . . , p,
−1 for i = p + 1, p + 2, . . . , p + q,

0 for i = p + q + 1, p + q + 2, . . . , p + q + r = n,

and IiIj = −IjIi. Now, we construct the “big” 2nD hypercomplex space
R2n

. Let b = (b1, b2, . . . , bn) ∈ Bn
2 be an arbitrary n-bit vector, where

bi ∈ B2 = {0, 1} and Bn
2 is the nD Boolean algebra. Let us introduce

Ib := Ib1
1 Ib2

2 · · · Ibn
n . Then 2n elements Ib form a basis of 2nD space, i.e.,

for all C ∈ R2n
we have C :=

∑
b∈Bn

2
cbIb. If C1,C2 ∈ R2n

, then we can
define their product C1C2. There are 3n possibilities for I2

i = +1, 0,−1,
∀i = 1, 2, . . . , n. Every possibility generates one algebra. Therefore, the
space R2n

with 3n rules of the multiplication forms 3n different 2nD
algebras, which are called the space Clifford algebras [8]. We denote
these algebras by A

Sp(p,q,r)
2n (R|I1, . . . , In), A

Sp(p,q,r)
2n or A

Sp
2n , if I1, . . . , In,

p, q, r are fixed.

Example 1 We start with the space R2 and provide it with the algebraic
frame of algebras of generalized complex numbers: R2 → A2(R) :=
R+RI = {z = x1+Ix2 | x1, x2 ∈ R}, where I is a generalized imaginary
unit.

If I2 = −1, i.e., I = i, then A2(R|i) = COM = {x1 + ix2 |
x1, x2 ∈ R; i2 = −1} is the field of complex numbers.

If I2 = +1, i.e., I = e, then A2(R|e) = DOU = {x1 + ex2 |
x1, x2 ∈ R; e2 = 1} is the ring of double numbers.

If I2 = 0, i.e., I = ε, then A2(R|ε) = DUA = {x1 + εx2 |
x1, x2 ∈ R; ε2 = 0} is the ring of dual numbers.

Example 2 Quaternions, as constructed by Hamilton, form the 4D al-
gebra A4 = A4(R) = A4(R|1, i, j, k) = R + Ri + Rj + Rk spanned by
4 hyperimaginary units 1, i, j, k. The identities i2 = j2 = k2 = −1,
ij = −ji = k are valid for these units. i2 = j2 = k2 = δ ∈ {−1, 0, 1}
can be set. Here, the two latter values (0 and 1) result in non-classical
quaternions that were proposed by Clifford [8]. Introducing notations
I, J,K for new hyperimaginary units, we get nine spatial algebras of
generalized quaternions, A4(R|1, I, J,K) := A4 = R + RI + RJ + RK
depending on which of nine possibilities resulting from I2 ∈ {1, 0,−1},
J2 ∈ {1, 0,−1} is valid for the two independent hyperimaginary units.
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Every generalized quaternion q has the unique representation of the form
q = q0 + q1I + q2J + q3K = Sc(q) + Vec(q), where q0, q1, q2, q3 are real
numbers and Sc(q) := q0, Vec(q) := q1I + q2J + q3K are scalar and
vector parts of the quaternion q, respectively.

We can make A
Sp
2n , be a ranked and Z/2Z-graded algebra. Let r(b) be

the Hamming weight (= rank) of b, i.e., a functional r : Bn
2 −→ [0, n−1]

defined by r(b) :=
∑n

i=1 bi, and let ∂(b) = r(b) (mod 2) be the grad of
b. Then A

Sp
2n can be represented as the ranked and Z/2Z-graded sums

A
Sp
2n =

⊕n
r=0 A

[r]
2n and R2n

=
⊕1

∂=0 A
{∂}
2n , where the dimension of the

vector space A
[k]
2n equals the binomial coefficient Ck

n and
∑n

k=0 Ck
n = 2n.

The dimensions of A
{0}
2n and A

{1}
2n are equal to 2n−1. The subspaces A

[k]
2n

are spanned by the k-products of units Ii1Ii2 . . . Iik (i1 < i2 < . . . <
ik), i.e., by all basis vectors Ib with r(b) = k. Every element C :=∑

b∈Bn
2

cbIb of A
Sp
2n has the representations: C = C[0] + C[1] + . . . + C[n]

and C = C{0} + C{1}, where C[0] ∈ A
[0]
2n is the scalar part of the Clifford

numbers, C[1] ∈ A
[1]
2n is its vector part, C[2] ∈ A

[2]
2n is its bivector part, . . . ,

C[n] ∈ A
[n]
2n is its n-vector part, and, finally, C{0} and C{1} are even and

odd parts of the Clifford number C. If C ∈ A
{l}
2n , we put ∂(C) = l and

say that l is the degree of C. Multiplication of two Clifford numbers
of ranks k and s gives the sum of Clifford numbers from |k − s| to
p = min(k + s, 2n − k − s) with increment 2, i.e., A[k]B[s] = C[|k−s|] +
C[|k−s|+2] + . . . + C[p].

2.2 Geometries of physical spaces

The conjugation operation in A
Sp(p,q,r)
2n maps every Clifford number

C := c0I0+
∑

b�=0 cbIb to the number C = c0I0−
∑

b�=0 cbIb. The algebras

A
Sp(p,q,r)
2n are transformed into 2nD pseudometric spaces designated by

CL
Sp(p,q,r)
2n or CL

p,q,r
2n , if the pseudodistance between two Clifford numbers

A and B is defined by ρ(A,B) =
√

(A − B)(A − B). Subspaces of pure

vector Clifford numbers x1I1 + . . . + xnIn ∈ Vec1
(
A

Sp
2n

)
are nD spaces

Rn := GRSp(p,q,r)
n . The pseudometrics constructed in CL

Sp(p,q,r)
2n induce

corresponding pseudometrics in GRSp(p,q,r)
n .

Example 3 In A2(R) we introduce a conjugation operation which maps
every element z = x1 + Ix2 to the element z = x1 − Ix2. Now, the gen-
eralized complex plane is turned into the pseudometric space A2(R) −→



Clifford Algebras as a Unified Language 7

GC
Sp(p,q,r)
2 if one defines the pseudodistance as:

ρ(z1, z2) =

⎧⎨
⎩

√
(x2 − x1)2 + (y2 − y1)2, if z ∈ A2(R|i),√
(x2 − x1)2 − (y2 − y1)2, if z ∈ A2(R|e),

|x2 − x1|, if z ∈ A2(R|ε),
where z1 := (x1, x2) = x1 + Ix2, z2 := (y1, y2) = y1 + Iy2. So, the plane
of the classical complex numbers is the 2D Euclidean space GC

Sp(2,0,0)
2 ,

the double numbers plane is the 2D Minkowskian space GC
Sp(1,1,0)
2 , and

the dual numbers plane is the 2D Galilean space GC
Sp(1,0,1)
2 . When one

speaks about all three algebras (or geometries) simultaneously, then the
corresponding algebra (or geometry) is that of generalized complex num-
bers, denoted by A

Sp(p,q,r)
2 (or GC

Sp(p,q,r)
2 ).

Example 4 In A4(R) we introduce a conjugation operation which maps
every quaternion q = q0 + Iq1 + Jq2 + Kq3 to the element q = q0 −
Iq1 − Jq2 − Kq3. If the pseudodistance ρ(p,q) between two general-
ized quaternions p and q is defined as the modulus of their difference

u = p − q = t + xI + yJ + zK : ρ(p,q) =
√

(p − q)(p − q) =√
uu, then nine spatial algebras A4(R) are transformed into nine 4D

pseudometric spaces designed as GH
Sp(p,q,r)
4 , where p, q and r stand for

the number of basis vectors with squares 1,−1 and 0, respectively, and
p + q + r = n. Thus, the pseudodistance can take positive, negative and
pure imaginary values. There are only 5 different geometries GH

Sp(p,q,r)
4 :

GH
Sp(4,0,0)
4 ,GH

Sp(2,2,0)
4 ,GH

Sp(2,0,2)
4 ,GH

Sp(1,3,0)
4 ,GH

Sp(1,2,1)
4 . The subspaces

of pure vector-valued generalized quaternions xI + yJ + zK are 3D
spaces GR

S(p,q,r)
3 := Vec{GH

Sp(p,q,r)
4 }. The pseudometrics introduced

in GH
Sp(p,q,r)
4 induce only three different pseudometrics in GR

Sp(p,q,r)
3 :

ρ(Vec{p},Vec{q}) = |Vec{p − q}| = |Vec{u}| =

⎧⎨
⎩

√
x2 + y2 + z2,√
x2 − y2 − z2,√
x2 = |x|.

They will be denoted by GR
Sp(3,0,0)
3 GR

Sp(1,0,2)
3 , GR

Sp(1,2,0)
3 . They form

Euclidean, Minkowskian, and Galilean 3D pseudometric spaces, respec-
tively.

All even Clifford numbers E0 ∈ A
{0}
2n of unit modulus represent the ro-

tation group of the corresponding space GRSp(p,q,r)
n , which is called the

spinor group and is denoted by Spin
(
A

Sp(p,q,r)
2n

)
. Generalized complex
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numbers and quaternions of unit modulus have the forms: e0 = eIϕ =
cos ϕ+ I sinϕ, Q0 = eu0ϕ = cos ϕ+u0 sin ϕ, where cos ϕ and sin ϕ are
trigonometric functions in the corresponding nD GCSp(p,q,r)

n -geometries,
ϕ is a rotation angle around the vector-valued quaternion u0 of unit
modulus (|u0| = 1, u0 = −u0). Clifford numbers E0 ∈ Spin

(
A

Sp(p,q,r)
2n

)
with unit modulus have the analogous form E0 =eu0ϕ =cos ϕ+u0 sin ϕ∈
Spin

(
A

Sp(p,q,r)
2n

)
for the appropriate bivector u0.

Theorem 1 [8]. All motions in 2D, 3D and nD spaces GR
Sp(p,q,r)
2 ,

GR
Sp(p,q,r)
3 , GRSp(p,q,r)

n are represented in the forms:

z′ = e0ze0 + w, x′ = Q0xQ−1
0 + w, x′ = E0xE−1

0 + w,

where e0 = eIϕ/2, Q0 = eu0ϕ/2, E0 = eu0ϕ/2, and |e0| = |Q0| = |E0| = 1.
If |e0|, |Q0|, |E0| �= 1, then the latter transformations form the “small”
affine groups Aff

(
GR

Sp(p,q,r)
2

)
, Aff

(
GR

Sp(p,q,r)
3

)
, Aff

(
GRSp(p,q,r)

n

)
, re-

spectively.

X

Y

X

Y

X

Y

a) b) c)

Figure 3. Rotations in a) 2D Euclidean space ��
Sp(2,0,0)
2 , b) 2D Minkowskian space

��
Sp(1,1,0)
2 and c) 2D Galilean space ��

Sp(1,0,1)
2 .

Using this theorem, we can describe geometric distortions of images in
the language of Clifford algebras. These distortions will be caused by:
1) nD translations x −→ x + w; 2) nD rotations x −→ E0(x + w)E−1

0 ;
3) dilatation: x −→ λx, where λ ∈ R+. If f(x) is an initial image and

λ�0wf(q) is its distorted version, then λ�0wf(x) := f
(
λE0(x + w)E−1

0

)
,

where λ is a scale factor, x,w ∈ GRSp(p,q,r)
n . We suppose that the human

brain can use the spinor and “small” affine groups for mental rotations
(see Fig. 3) and motions of images (for example, in a dream), which are
contained in the brain memory on the so-called “screen of mind.”
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3. Clifford Algebras as Models of Perceptual
Multicolor Spaces

Early in the 19th century Young (1802) proposed that the human
visual system contains three color mechanisms. This theory was later
supported by Helmholtz (1852) and became known as the Young–
Helmholtz theory of color vision. Later, Hering (1878) proposed that
color vision is mediated by red-green and blue-yellow opponent mecha-
nisms. Thus, for a time it appeared there were two conflicting theories
of color vision. As a result of experimental work, it has since become
recognized that the two theories describe different levels in the visual
system. In agreement with the Young–Helmholtz theory, there are three
photoreceptor mechanisms, i.e., cone types, in the human retina, and,
in accordance with Hering’s theory, there are color-opponent neurons at
higher levels in the VC. The multicomponent color image appears on the
retina as the kD vector

fRet
Mcol(x) =

⎡
⎢⎢⎣

f1(x)
f2(x)
. . .

fk(x)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

∫
λ Sobj(λ,x)H1(λ)dλ∫
λ Sobj(λ,x)H2(λ)dλ

. . .∫
λ Sobj(λ,x)Hk(λ)dλ

⎤
⎥⎥⎦ , (1)

where Sobj(λ,x) is the color spectrum received from the point x of an
object and H1(λ), H2(λ), . . . ,Hk(λ) are sensor sensitivity functions. We
give algebraic models for two levels (retina and VC) of visual systems
using different hypercomplex Z/kZ-graded Clifford algebras.

3.1 Algebraization of the Young–Helmholtz
model

3.1.1 The Young–Helmholtz model of color images. We
shall represent RGB-color images that appear on the human retina as
triplet-valued functions: fRet

col (x) = fR(x)1col + fG(x)εcol + fB(x)ε2
col,

where 1col, ε
1
col, ε

2
col are hyperimaginary units, ε3

col = 1. Numbers of the
form C = x1 + yεcol + zε2

col (ε3
col = 1) were considered by Greaves [10].

According to Greaves, these numbers are called the triplet or 3-cycle
numbers. We shall call them the color numbers. The product of two
color numbers C1 = a0 + a1εcol + a2ε

2
col and C2 = b0 + b1εcol + b2ε

2
col is

given by

C1C2 = (a0 + a1εcol + a2ε
2
col)(b0 + b1εcol + b2ε

2
col) =

(a0b0 + a1b2 + a2b1) +(a1b0 + a2b2 + a0b1)εcol+(a2b0 + a1b1 + a2b0)ε2
col.

Thus, the color product is isomorphic to the 3-point cyclic convolution.
The color conjugate C of a color number C = x + yεcol + zε2

col is defined
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by C = x + yεcol + zε2
col = x+ yεcol + zε2

col = x+ zεcol + yε2
col. The norm

||C|| = CC is given by ||C||2 = CC = (x2 +y2 +z2)− (xy +xz +yz). Each
color number has three modules

||C||1 = |x + y + z|, ||C||2 =
√

x2 + y2 + z2 − xy − xz − yz,

||C||3 = 3
√

x3 + y3 + z3 − 3xyz

possessing the properties: ||C1C2||i = ||C1||i||C2||i, i = 1, 2, 3 and ||C||33 =
||C||22||C||1. Triplets, strictly speaking, do not form a 3D field, but form
an associative so-called triplet (color) algebra

Acol
3 =Acol

3 (R) = A3(R|1, εcol, ε
2
col) := R1 + Rεcol + Rε2

col.

Greaves [10] considered a color number x + yε + zε2 (here, ε ≡ εcol)

Figure 4. Geometric interpretation of triplet algebra

as a point of 3D space and gave the following geometric interpretation
of triplet operations. He constructed a sphere (see Fig. 4) with the
center at the origin and denoted intersection points of the sphere with
the coordinate axes X,Y,Z in the positive direction by l,m, n, respec-
tively. He drew a circle via points l,m, n; the “symmetrical axis” elu

was drawn via the center of this circle and the origin; the “symmetrical
plane” Ech is perpendicular to the axis elu. Then Greaves considered
rectangular projections of color numbers C on the axis elu and plane
Ech. Furthermore, he proved that every triplet C can be represented as
a sum of a real number being depicted by a rectangular projection of
the triplet on the axis elu and a complex number being depicted by a
rectangular projection of the triplet on the plane Ech. Therefore, the
color algebra is the direct sum of the real R and complex C fields:
A3(R,C) = R · elu + C · Ech = R ⊕ C, where elu := (1 + ε + ε2)/3,
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Ech := (1 + ω3ε
2 + ω2

3ε)/3 are orthogonal “real” and “complex” idem-
potents (e2

lu = elu, E2
ch = Ech, eluEch = Echelu = 0), respectively, and

ω3 := e
2πi
3 . Therefore, every color number C = x + yε1 + zε2 is a lin-

ear combination C = x + yε1 + zε2 = alu · elu + zch · Ech = (alu, zch)
of the “scalar” aluelu and “complex” parts zchEch in the idempotent
basis {elu,Ech}. We will call the real numbers alu ∈ R the luminance
(intensity) numbers, and the complex numbers zch = b + jc ∈ C the
chromaticity numbers. Obviously, aluelu := Celu = (x + yε1 + zε2)elu =
(x+y+z)elu, zchEch := CEch = (x+yε1+zε2)Ech = (x+ω1

3y+zω2
3)Ech,

where alu = x+ y + z, zch = x + ω2
3y + zω1

3. In the new representation
two main arithmetic operations have very simple forms:

C1 ±C2 =(a1elu + z1Ech)± (a2elu + z2Ech)=(a1 ±a2)elu +(z1 ± z2)Ech,

C1C2 = (a1elu + z1Ech)(a2elu + z2Ech) = (a1a2)elu+(z1z2)Ech,

or, briefly, C1 ± C2 = (a1, z1) ± (a2, z2) = (a1 ± a2, z1 ± z2), C1C2 =
(a1, z1) · (a2, z2) = (a1a2, z1z2). For C we have C = x + yε1 + zε2 =
alu · elu + zch · Ech = (alu, zch). Therefore,

||C||1 = |x + y + z|= |alu|, ||C||22 = |x2+ y2+ z2− xy − xz − yz|= ||zch||2,
||C||33 = |x3 + y3 + z3 − 3xyz| = |alu||zch||2.

The norms ||.||1, ||.||2 are called the luminance and chromaticity norms,
respectively. We can consider a color image in the two forms:

fRet
col (x, y) = fR(x, y)1col +fG(x, y)εcol + fB(x, y)ε2

col =

flu(x, y)elu+ fch(x, y)Ech.

In the second form we have separated the color image into two terms: the
luminance (intensity) term flu(x, y) and the chromacity term fch(x, y)
(color information). This color transformation is a linear projection (see
Fig. 4) of the color vector-valued pixel in the color space on the diagonal
vector elu := (1, 1, 1) = iR + iG + iB and on the 2D plane πch(C) which
is orthogonal to the diagonal vector elu : πch(C)⊥elu. The vector elu is
called the luminance (white) vector and the 2D plane πch(C) is called
the chromacy plane of RGB-space. The triangle 	(iRiGiB) ‖ πch(C)
drawn between three primaries iRiGiB is called the Maxwell triangle.
The plain πch(C) is equipped with the structure of the complex field C.
Therefore, we can consider an RGB image as a pair of images fRet

col (x) =
(flu(x), fch(x)), where flu(x) := 〈elu|fRet

col (x)〉 = fR(x) + fG(x) + fB(x),
fch(x) := fcol(x) − flu(x)elu, and 〈flu(x)|fch(x)〉 = 0. Here, flu(x) :
R2 −→ R+ is a real-valued image (grey-level image) and fch(x) : R2 −→
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πch(C) is a complex-valued image. Hence, each pixel is represented both
by a real number flu(x) for the luminance and a complex number fch(x)
for the chromatic information. The argument of the complex number
fch(x) is directly equivalent to the traditional definition of hue, and the
modulus of the complex number is similar to saturation. Changes in
both the surrounding world and mental space of reality such as intensity,
color or illumination can be treated in the triplet algebra language as
the action of some transformation groups in the perceptual color space
Acol

3 . Let us consider some of them.

1 Let A = (1, eiϕ). Then transformation of color images fRet
col (x) −→

Afcol(x) = (1, eiϕ) · (flu(x), fch(x)) = (flu(x), eiϕfch(x)) changes
only the hue of the initial image. The set of all such transforma-
tions forms the hue orthogonal group HOG(2) := {(1, eiϕ)| eiϕ ∈
C}.

2 Now let A = (1, λ), λ > 0. Then transformation of color images
fRet
col (x) −→ Afcol(x) = (1, λ) · (flu(x), fch(x)) = (flu(x), λfch(x))

changes only the saturation of the initial image. The set of all such
transformations forms the saturation dilation group SDG(2) :=
{(1, a)| a ∈ R+}.

3 If A = (1, zch) = (1, |zch|eiϕ), then transformations fRet
col (x) −→

Afcol(x) = (1, |zch|eiϕ) · (flu(x), fch(x)) = (flu(x), |zch|eiϕfch(x))
change both hue and saturation of the initial image. The set
of all such transformations forms the chromatic group CG(2) :=
{(1, zch) = (1, |z|eiϕ) | |zch|eiϕ ∈ C}.

4 If A = (alu, zch) = (alu, |zch|eiϕ), where a > 0, then transfor-
mations fRet

col (x) −→ Afcol(x) = (alu, |zch|eiϕ) · (flu(x), fch(x)) =
(aluflu(x), |zch|eiϕfch(x)) change luminance, hue and saturation of
the initial image. The set of all such transformations forms the
luminance-chromatic group LCG(2) =

{
(alu, zch) | (alu ∈ R+)&

(zch ∈ C)
}
.

3.1.2 The Young–Helmholtz k-cycle model of multicolor
images. We will interpret multicolor images (1) as multiplet-valued
signals

fMcol(x) = f0(x)1Mcol + f1(x)ε1
Mcol + . . . + fk−1(x)εk−1

Mcol, x ∈ Rn,

which take values in the multiplet k-cycle algebra

AMcol
k := R1Mcol + Rε1

Mcol + . . . + Rεk−1
Mcol,
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where 1, ε1
Mcol, . . . , ε

k−1
Mcol (εk

Mcol =1) are multicolor hyperimaginary units.
We will denote them by 1, ε1, . . . , εk−1. This algebra is called the mul-
tiplet (multicolor) algebra. One can show that this algebra is the direct
sum of the real and complex fields:

AMcol
k =

klu∑
i=1

[R · ei
lu] +

kch∑
j=1

[C · Ej
ch] = Rklu ⊕ Ckch,

where klu = 1, 2 and kch = k
2 , k−1

2 if k is odd or even, respectively, and
ei

lu and Ej
ch are orthogonal idempotent units such that (ei

lu)2 = ei
lu,

eiej = ejei, (Ej
ch)2 = Ej

ch, Ei
chE

j
ch = Ej

chE
i
ch, and ei

luE
j
ch = Ej

che
i
lu = 0,

for all i, j. Every multiplet C can be represented as a linear combination
of klu “scalar” parts and kch “complex” parts:

C =
klu∑
i=1

(ai · ei
lu) +

kch∑
j=1

(zj · Ej
ch).

The real numbers ai ∈ R are called the multi-intensity numbers and
complex numbers zj = b + ic ∈ C are called the multi-chromacity num-
bers. Now we will interpret the multicolor nD image appearing on the
nD retina as a multiplet-valued nD signal of the form:

fRet
Mcol(x) =

klu∑
i=1

[f i
lu(x) · ei

lu] +
kch∑
j=1

[f j
ch(x) ·Ej

ch] =

(
f1

lu(x), . . . , fklu
lu (x); f1

ch(x), . . . , fkch
ch (x)

)
.

Here, the argument x belongs to the nD vector part GRp,q,r
n of the space

algebra A
Sp
2n . Changes in both the surrounding world and mental spaces

of reality, such as multi-intensity and multi-color, can be treated in the
language of multiplet algebra as the action of the following transforma-
tion group in the perceptual multicolor space AMcol

k . Letting

A = (a1
lu, . . . , aklu

lu , z1
ch, . . . , zkch

ch ) =

(a1, . . . , aklu ; |z1
ch|eiϕ1 , |z2

ch|eiϕ2 , . . . , |zkch
ch |eiϕkch ),

the following transformations of a multicolor image

fMcol(x) −→ AfMcol(x) =
(
a1f1

lu(x), . . . , aklufklu
lu (x); |z1

ch|eiϕ1f1
ch(x), . . . , |zkch

ch |eiϕkch fkch
ch (x)

)
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change multi-luminancies, multi-hues and multi-saturations of the initial
multicolor image. The set of all such transformations forms the multi-
luminance/ multi-chromatic group MLCG(k) := {(a1

lu, . . . , aklu
lu ; z1

ch, . . . ,

zkch
ch ) | ai

lu ∈ R+, zj
ch ∈ C}.

3.1.3 Multiorthounitary transforms of multicolor images.
A 2D discrete multicolor image can be defined as a 2D array fRet

Mcol =[
fRet
Mcol(i, j)

]N

i,j=1
, i.e., as a 2D discrete AMcol

k -valued function of one of

the following forms:

fRet
col (i, j) : Z2

N −→ AMcol
k , fRet

col (i, j) : Z2
N −→ Rklu ⊕ Ckch.

Here, every color pixel fRet
Mcol(i, j) at position (i, j) is a multicolor number

of the type fRet
Mcol(i, j) = f0(i, j)1Mcol +f1(i, j)ε1

Mcol +. . .+fk−1(i, j)εk−1
Mcol

or of the type fRet
Mcol(i, j)) =

∑klu
i=1[f

i
lu(i, j) · ei

lu] +
∑kch

j=1[f
j
ch(i, j) ·Ej

ch] =(
f1

lu(i, j), . . . , fklu
lu (i, j); f1

ch(i, j), . . . , fkch
ch (i, j)

)
. In particular, for color

images, we have fRet
col (i, j) = fr(i, j)+fg(i, j)ε1+fb(i, j)ε2 and fRet

col (i, j) =
flu(i, j)elu + fch(i, j)Ech. The set of all such images forms N2D Greaves–

Hilbert space
(
AMcol

k

)N2

. The vector space structure of this space is de-
fined with multiplication by triplet-valued scalars (Cf)(i, j) := Cf(i, j).

Our N2D Greaves–Hilbert space
(
AMcol

k

)N2

over AMcol
k can be inter-

preted as kN2D Hilbert space over R, i.e., as
(
AMcol

k

)N2

= RN2
1 +

RN2
ε1 + . . . + RN2

εk−1, or as a direct sum of N2D real and complex
Hilbert spaces

(
AMcol

k

)N2

=
[ klu⊕

i=1

RN2
ei

lu

]
+

[ kch⊕
j=1

CN2
Ej

ch

]
=

[ klu⊕
i=1

RN2
]
⊕

[ kch⊕
j=1

CN2
]
.

In particular, for color images
(
Acol

3

)N2

= RN2
+ RN2

ε1 + RN2
ε2, or(

Acol
3

)N2

= RN2 ⊕ CN2
, where RN2

, RN2
ε1, R

N2
ε2 are real N2 Hilbert

spaces of red, green, and blue images, respectively, RN2
is N2D real

space of gray-level images, and CN2
is N2D complex space of chro-

matic images. Let
(
AMcol

k

)N2

be a N2 Greaves–Hilbert space over AMcol
k .

We say that the operator L2D :
(
AMcol

k

)N2→ (
AMcol

k

)N2

, L2D[fRet
Mcol] =

FRet
Mcol is multicolor linear if and only if for all fRet

Mcol,g
Ret
Mcol ∈

(
AMcol

k

)N2

and for all C ∈ AMcol
k L2D[fRet

Mcol + gRet
Mcol] = L2D[fRet

Mcol] + L2D[gRet
Mcol],

L2D[CfRet
Mcol] = CL2D[fRet

Mcol]. Otherwise, we call L2D multicolor nonlin-
ear. If L2D is a multicolor linear operator and ||det(L2D)||22 does not
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vanish, then we call operator L2D nonsingular. Otherwise, we call L2D

singular. The inverse L−1
2D of an operator L2D exists if and only if L2D

is nonsingular. L−1
2D is calculated in the same way as an ordinary in-

verse matrix. The set of nonsingular multicolor linear operators form
the general multicolor linear groups over multiplet algebra AMcol

k and is
denoted by GL(N,AMcol

k ). It is then easy to define the adjoint opera-
tor L∗

2D for the color linear operator L2D whose essential properties are
〈fRet

Mcol|L2DgRet
Mcol〉 = 〈L∗

2DfRet
Mcol|gRet

Mcol〉, and for 1L2D 2L2D the property
( 1L2D 2L2D)∗ = 2L

∗
2D 1L

∗
2D is true.

Definition 1 A multicolor linear operator L2D on
(
AMcol

k

)N2

is said
to be multi-orthounitary if L−1

2D = L∗
2D.

Multi-orthounitary operators form the multi-orthounitary group MOU

= MOU(AMcol
k ). This group is isomorphic to the direct sum of klu or-

thogonal and kch unitary groups, MOU(AMcol
k ) =

[ klu⊕
i=1

O(R)ei
lu

]
+

[ kch⊕
j=1

U(C)Ej
ch

]
=

[ klu⊕
i=1

O(R)
]
⊕

[ kch⊕
j=1

U(C)
]
.

In particular, the orthounitary group of transformations for color images
has the decomposition: OU(Acol

3 ) = O(R)elu +U(C)Ech. Every element
of MOU(AMcol

k ) and OU(Acol
3 ) has the representation:

L2D =
[ klu⊕

i=1

Oi
2Dei

lu

]
+

[ kch⊕
j=1

U
j
2DEj

ch

]
, L2D = O2Delu + U2DEch, (2)

where Oi
2D ∈ O

i(R), O2D ∈ O(R), and U
j
2D ∈ U

j(C) U2D ∈ U(C) are
orthogonal and unitary transforms, respectively. For multicolor image
processing we shall use separable 2D transforms.

Definition 2 We call the multi-orthounitary transform L2D[fRet
Mcol] sep-

arable if it can be represented by L2D[fRet
Mcol] = L1D[fRet

Mcol]M1D, i.e.,
L2D = L1D ⊗ M1D is the tensor product of two 1D multi-orthounitary
transforms of the form:

L2D = L1D ⊗ L1D =
[ klu⊕

i=1

(
Oi

1 ⊗ Oi
2

)
ei

lu

]
+

[ kch⊕
j=1

(
U

j
1 ⊗ U

j
2

)
Ej

ch

]
(3)

for multicolor images, and the tensor product of two 1D orthounitary
transforms L2D = L1D ⊗ L1D = (O1 ⊗ O2)elu + (U1 ⊗ U2)Ech for color
images, where Oi

1,O
i
2 and U

j
1,U

j
2 are 1D orthogonal and unitary trans-

forms, respectively.
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Figure 5. Color Walsh–Fourier �� = Welu + �Ech, Hartley–Fourier ��� =
Htelu + �Ech and Haar–Fourier ��� = Hrelu + �Ech transforms, respectively

In particular, we can obtain any orthounitary transform, using any
two pairs of orthogonal O1,O2 and unitary transforms U1,U2. It is
possible to use one pair of orthogonal and unitary transforms, when
O1 = O2 = O and U1 = U2 = U. In this case we obtain a wide family of
orthounitary transforms of the form: L2D = (O ⊗ O)elu + (U ⊗ U)Ech,
using different 1D orthogonal transforms. The following table shows
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some of the possibilities:

� �� ��� ��

W Welu + �Ech Welu + ��Ech Welu + ���Ech Welu + ��Ech

Hd Hdelu + �Ech Hdelu + ��Ech Hdelu + ���Ech Hdelu + ��Ech

Ht Htelu + �Ech Htelu + ��Ech Htelu + ���Ech Htelu + ��Ech

Hr Hrelu + �Ech Hrelu + ��Ech Hrelu + ���Ech Hrelu + ��Ech

Wv Wvelu + �Ech Wvelu + ��Ech Wvelu + ���Ech Wvelu + ��Ech

where W, Hd, Ht, Hr, Wv are Walsh, Hadamard, Hartley, Haar,
and Wavelet orthogonal transforms, and F, CW, CFP, and CH are
Fourier, complex Walsh, complex Fourier–Prometheus, complex Haar
transforms. Every pair (O,U) of an orthogonal O and a unitary U trans-
form generates an orthounitary (color) transform L = Oelu+UEch. Some
examples of basis color functions of color transforms WF = Welu+FEch,
HTF = Htelu + FEch, HRF = Hrelu + FEch are shown in Fig. 5.

3.2 Algebraization of the Hering model
3.2.1 The Hering Z/2Z-graded model of color images. Let
us consider 3D color space R3

col = RJR+ RJG+ RJB spanned by three
new hyperimaginary units Ji (i = 1, 2, 3 or i = R,G,B) : J1 = JR

(red unit), J2 = JG (green unit), J3 = JB (blue unit). We assume
J2

R = ar, J2
G = ag, J2

B = ab, where ar, ag, ab ∈ {+1, 0,−1}. We assume
J2

i = +1 for i = 1, . . . , α, J2
i = −1 for i = α + 1, . . . , α + β, J2

i = 0
for i = α + β + 1, . . . , α + β + γ, where α + β + γ = 3. Further, we
construct a new color Clifford algebra A

col(α,β,γ)
23 (JR, JG, JB) = RJBl +

(RJR +RJG+RJB)+(RJRG +RJRB +RJGB)+RJWh, where JBl = 1,
JWh = JRJGJB are black and white units, IRG := JRJG, JRB := JRJB ,
JGB := JGJB . This is an algebra of generalized color octonions with
signature (α, β, γ).

Definition 3 The functions fV C
col : GRp,q,r

n →A
col(α,β,γ)
8 (JR, JG, JB) of the

form:

fV C
col (x) = fBl(x)J∅ +

(
fR(x)JR + fG(x)JG + fB(x)JB

)
+

+
(
fRG(x)JRG + fRB(x)JRB + fGB(x)JGB

)
+ fWh(x)JWh

are called the A
col(α,β,γ)
23 -valued color nD images appearing in the human

Visual Cortex.

The second opponent cells map R,G,B components on the 4D unit sphere
f2

Bl+f2
RG+f2

RB+f2
GB = 1, where fRG, fRB , fGB , fBl are black, red-green,
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red-blue and green-blue components, respectively. Therefore, resulting
from the capacity of this algebraic model of color image, we can formu-
late the spin-valued function

fV C
col (x) := fBl(x)JBl +

(
fRG(x)JRG + fRB(x)JRB + fGB(x)JGB

)

which has values in the spin part Spin
(
A

col)
8 (JR, JG, JB)

)
of the color

Clifford algebra.

Definition 4 The functions fV C
col : R2 −→ Spin

(
Acol

8 (JR, JG, JB)
)
, and

fV C
col : Rn −→ Spin

(
Acol

8 (JR, JG, JB)
)

are called the spin-valued color 2D
and nD images, respectively.

For this model, color changes in both the surrounding world and men-
tal spaces can be described as the action of the color spinor trans-
formation group in the perceptual color spaces Acol

8 and Spin
(
Acol

8

)
.

If C0 ∈ Spin
(
Acol

8

)
, then the transformations fV C

col (x) −→ C0fV C
col (x),

fV C
col (x) −→ fV C

col (x)C−1
0 and fV C

col (x) −→ C0fV C
col (x)C−1

0 are called the
left, right and two-sided spinor-color transformations of fV C

col (x), respec-
tively.

3.2.2 The Hering Z/kZ-graded model of multicolor images.
To form the algebraic model of multicolor images in the animals’ VC,

we consider a kmD multicolor quantum Clifford algebra

QCA
Mcol(α0,α1,...,αk−1)
km (J1, . . . , Jm)

(i.e., Clifford algebra with signature (α0, α1, . . . , αk−1) and deformed
by a k primitive root of unity ωk) generated by multicolor hypercom-
plex units J1, . . . , Jm with relations Jk

i = ω0 for α0 hypercomplex units,
Jk

i = ω1 for α1 hypercomplex units, . . . , Jk
i = ωk−1 for αk−1 hyper-

complex units, and JJJi = ωkJiJj , if i < j, where α0 + α1 + . . . +
αk−1 = m, ω := k

√
1 [9]. The elements Js = Js1

1 · · · Jsm
m form a ba-

sis of QCA
Mcol(α0,α1,...,αk−1)
km (J1, . . . , Jm), where s = (s1, . . . , sm) ∈ Bm

k ,

si ∈ Bk = {0, . . . , k − 1}. We shall denote this algebra by QCAMcol
km , if

J1, . . . , Jm, and (α0, α1, . . . , αk−1) are fixed. In the particular case when
k = 2 (ωk = −1), m = 3 and α0 = α, α1 = β, α2 = γ, the kmD quan-
tum Clifford algebra QCA

Mcol(α0,α1,...,αk−1)
km (J1, . . . , Jm) is the generalized

color octonion algebra A
col(α,β,γ)
8 . We can make QCAMcol

km be a ranked
and Z/kZ-graded algebra. Let r(s) be the Hamming weight of s, i.e.,
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a functional r : Bm
k −→ [0,m − 1] defined by r(b) :=

∑m
i=1 [1 − δ0,si

]
,

and let ∂(s) =
∑m

i=1 si (mod k) be the grad of s. We set QCA
[r]
km =

SPAN
{
Js| r(s) = r

}
, obtaining the ranked sum

QCAMcol
km =

m⊕
r=0

QCA
[r]
km.

By setting QCA
{l}
km = SPAN

{
Js| ∂(s) ≡ l mod k

}
, we get the Z/kZ-

graded R-algebra QCAMcol
km =

k−1⊕
i=0

QCA
{l}
km . We put ∂(C) = l and say

that l is the degree of C. . We say that Φg and Φr are graded and

ranked automorphisms if Φg

(
QCA

{l}
km

)
= QCA

{l}
km and Φr

(
QCA

[r]
km

)
=

QCA
[r]
km for all l = 0, 1, . . . , k − 1, and r = 0, 1, . . . ,m, respectively. Let

QCA
[1]
km = SPAN

{
Js | r(s) = 1

}
be the vector part of the quantum

Clifford algebra QCAMcol
km . Then the set of automorphisms of unit modu-

lus Φr

(
QCA

[1]
km

)
= QCA

[1]
km forms a transformation group of QCA

[1]
km. We

shall call it the quantum spinor group and denote it by

QSpin
(
QCAMcol

km

)
.

Definition 5 The functions

fV C
Mcol(x) : GRSp(p,q,r)

n −→ QCA
Mcol(α0,α1,...,αk−1)
km (J1, ..., Jm),

fV C
Mcol(x) : GRSp(p,q,r)

n −→ QSpin
(
QCA

Mcol(α0,α1,...,αk−1)
km (J1, ..., Jm)

)

are called the nD Cliffordean-valued and quantum-spin-valued images
appearing in the animals’ VC.

For this model, multicolor changes in both the surrounding world and
mental spaces can be described as the action of the quantum spinor
transformation group in the perceptual color spaces QSpin

(
QCAMcol

km

)

and QCAMcol
km . If C0 ∈ QSpin

(
QCAMcol

km

)
, then the transformations

fV C
Mcol(x) −→ C0fV C

Mcol(x),

fV C
Mcol(x) −→ fV C

Mcol(x)C−1
0 and fV C

Mcol(x) −→ C0fV C
Mcol(x)C−1

0
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are called the left, right and two-sided spinor-color transformations of
fV C
Mcol(x), respectively. Further, we interpret an image as an embed-

ding of a manifold in a spatial-multicolor Clifford algebra of higher di-
mension. The embedding manifold is a “hybrid” (spatial-multicolor)
space that includes spatial coordinates as well as color coordinates. For
example, a 2D color image is considered as a 3D manifold in the 5D
spatial-color space R5

SpCol(I1, I2;JR, JG, JB) = (RI1 + RI2) ⊕ (RJR +
RJG + RJB) = R2

Sp ⊕ R3
col, whose coordinates are (x, y, fR, fG, fB),

where x ∈ RI1, y ∈ RI2 are spatial coordinates and fR ∈ RJR,
fG ∈ RJG, fB ∈ RJB , are color coordinates. It is clear that the ge-
ometrical, color and spatial-multicolor spaces Rn

Sp, Rk
Mcol, Rn+m(k−1)

SpMcol
generate spatial, color and quantum spatial-multicolor Clifford algebras
A

Sp(p,q,r)
2n , QCA

Mcol(α0,α1,...,αk−1)
km , QCA

SpMcol(p,q,r;α0,α1,...,αk−1)
2nkm , respec-

tively. Here, all spatial hyperimaginary units commute with all multi-
color units.

3.2.3 Clifford-unitary transforms of multicolor images.
2D discrete Cliffordean-valued images appearing in the animals’ VC can
be defined as a 2D array fV C

Mcol := [fV C
Mcol(i, j)]

N
i,j=1. Here, every pixel

fV C
Mcol(i, j) at position (i, j) is a quantum Clifford number of the type
fV C
Mcol(i, j) =

∑
s∈Bm

k

fs(i, j)Js. The set of all such images forms the N2D

Clifford–Hilbert space L

(
Z2

N ,QCAMcol
km

)
=

(
QCAMcol

km

)N2

. The vector
structure of this space is defined with multiplication by Clifford-valued
scalars (Cf)(i, j) := Cf(i, j). We say that the operator

L2D :
(
QCAMcol

km

)N2

−→
(
QCAMcol

km

)N2

, i.e., L2D[fV C
Mcol] = FV C

Mcol

is Clifford linear if and only if for all fV C
Mcol,g

V C
Mcol ∈

(
QCAMcol

km

)N2

and

for all C1,C2,B1,B2 ∈ QCAMcol
km

L2D

[
C1fV C

McolB1 + C2gV C
McolB2

]
= C1L2D[fV C

Mcol]B1 + C2L2D[gV C
Mcol]B2.

Otherwise we call L2D Clifford nonlinear. If L2D is a Clifford linear
operator and ||det(L2D)||22 does not vanish, then we call the opera-
tor L2D nonsingular. Otherwise L2D is singular. The inverse L−1

2D of
the operator L2D exists if and only if L2D is nonsingular. The set of
nonsingular Clifford linear operators forms the general Clifford linear
groups over the quantum Clifford algebra QCAMcol

km and is denoted by
GCL

(
N,QCAMcol

km

)
. It is then easy to define the adjoint operatorL∗

2D
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for the Clifford linear operator L2D, whose essential properties are

〈fV C
Mcol|L2DgV C

Mcol〉 = 〈L∗
2DfV C

Mcol|gV C
Mcol〉,

and for the product 1L2D 2L2D we have

( 1L2D 2L2D)∗ = 2L
∗
2D 1L

∗
2D.

The Clifford linear operator L2D is said to be Clifford-unitary if

L−1
2D = L∗

2D.

Clifford-unitary operators form the Clifford-unitary multicolor group
CU

(
N,QCAMcol

km

)
. For multicolor image processing we shall use separa-

ble 2D transforms. The Clifford-unitary transform L2D[fV C
Mcol] = FV C

Mcol
is called separable if it can be represented by FV C

Mcol = L2D

[
fV C
Mcol

]
=

L1D

[
fV C
Mcol

]
M1D, i.e., L2D = L1D ⊗ M1D is the tensor product of two

1D Clifford-unitary transforms.

4. Hypercomplex-valued invariants of nD
multicolor images

4.1 Clifford-valued invariants
Let us assume that fMcol(x) : Rn

Sp −→ AMcol
k is an image of a multi-

color nD object. It appears on the nD eye retina as a function fRet
Mcol(x)

of space variables x ∈ Vec1(ASp
2n ) = GRSp(p,q,r)

n with values in the mul-
ticolor algebra AMcol

k : fRet
Mcol(x) : GRSp(p,q,r)

n −→ AMcol
k . This image

can be considered in the VC as a function fV C
Mcol(x) of the same space

variables x, but with values in the multicolor quantum Clifford algebra
QCAMcol

kn , i.e., as fV C
Mcol(x) : GRSp(p,q,r)

n −→ QCAMcol
kn . We shall denote

both algebras AMcol
k and QCAMcol

kn by AMcol. Changes in the surround-
ing world can be treated in the language of the spatial-multicolor al-
gebra as an action of two groups: the space affine group Aff(GRp,q,r

n )
acting on the physical space Vec1(ASp

2n ) = GRp,q,r
n and the multi-color

group MLCG(k) acting on AMcol
k (if AMcol = AMcol

k ) or the quan-
tum spin group Spin(QCAMcol

km ) on QCAMcol
kn (if AMcol = QCAMcol

kn ). We
shall denote both groups Spin(QCAMcol

km ) and MLCG(k) by MCGRMcol.

Let GSpMcol = Aff(GRSp(p,q,r)
n )×MCGRMcol be a spatial-multicolor

group, and (gSp,gMcol) ∈ GSpMcol, where gSp ∈ Aff(GRp,q,r
n ), gMcol ∈

MCGRMcol. If x ∈ GRSp(p,q,r)
n is a generalized space Clifford number and

C ∈ AMcol is a multicolor quantum Clifford number, then all products
of the form xC are called spatial-color numbers. They form a space-
color algebra ASpMcol := A

Sp
2n ⊗ AMcol. Here, we assume that all spatial

hyperimaginary units commute with all color units.
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Definition 6 The ASpMcol-valued functional J = M[fMcol(x)] of the
image fMcol(x) is called the relative GSpMcol-invariant if

J = M
{
gMcol ◦ fMcol(gSp ◦ x)

}
= C · M{fMcol(x)} · C−1,

∀g ∈GSpMcol, where C,C−1are left and right ASpMcol-valued multipliers.
If C = 1 then J is called the absolute invariant and denoted by I.

Let c be the centroid of the image fMcol(x).

Definition 7 The functionals

Mp := M{fMcol} =
∫
x∈��Sp

n

(x − c)pfMcol(x)dx

are called the central ASpMcol-valued moments of the nD image fMcol(x),
where p ∈ Q are rational numbers.

Let us clarify the rules of moment transformations with respect to dis-
tortions of color and geometry of the initial images. If fMcol(x) is the
initial image, then f�0

λ,�0,w(x∗) = C0

{
fMcol

(
λE0(x+w)E−1

0

)}
C−1

0 denotes

its AMcol-multicolor and GRp,q,r
n -geometrical distorted copy. Here v,w

are nD vectors. Summing v with w brings us to image translation by
the vector w, two-sided multiplications λE0(x+w)E−1

0 by λE0 and E−1
0

equivalent to both an nD rotation of the vector z + w and a dilata-
tion given by the factor λ. Here, fMcol −→ C0fMcolC

−1
0 is a multicolor

transformation of the initial image.

Theorem 2 The central moments Mp of the multicolor images fMcol(x)
are relative ASpMcol-valued invariants

Jp{λ�0wf�0
Mcol}=Mp{λ�0Wf�0

Mcol}=
(
λp+nC0E

p
0

)
Mp{fMcol}

(
E
−p
0 C−1

0

)
(4)

with respect to the spatial-multicolor group GSpMcol with both ASpMcol-
valued left multipliers C0λ

p+3E
p
0 and A

Sp
2n -valued right multipliers E

−p
0 ,

respectively (see Fig. 6), and the normalized central moments

|Np{λ�0wf�0
Mcol}|= |Mp{λ�0wf�0

Mcol}Mp−1
0 {λ�0wf�0

Mcol}|
/
|Mp

1{λ�0wf�0
Mcol}|

are absolute scalar-valued invariants, with respect to the same group,
i.e., Ip = |Np{λ�0wf�0

Mcol}| = |Np{fMcol}|.
Now we consider the most important cases for invariants of grey-level,
color and multicolor 2D and 3D images.
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fmcol(x)
λE0(x + w)E−1

0

C0

C0fmcol(λE0(x + w)E−1
0 )C−1

0

M

λp+nC0

(
E

p
0Ṁp{fmcol(x)}E−p

0

)
C−1

0

λp+nC0E
p
0{·}E−p

0 C−1
0

Ṁp{fmcol(x)}

M

�
�

�

�

Figure 6. Transformations of �SpMcol-valued moments with respect to the spatial-
multicolor group GSpMcol

n,k

4.2 Complex and quaternion invariants of 2D
and 3D grey-level images

Let GC
Sp
2 = {z = x + Iy | x, y ∈ R; I2 = −1, 0,+1} be a generalized

spatial complex plane. Then a grey-level 2D image f(x, y) can be consid-
ered as a function of a generalized complex variable, i.e., f(x, y) = f(z),
where z = x + Iy ∈ GC

Sp
2 . Let c be the centroid of the image f(z).

Definition 8 Functionals of the form

ṁp{f} =
∫
z∈��Sp

2

(z − c)pf(z)dz

are called the one-index central A
Sp
2 -valued moments of the image f(z),

where dz := dxdy, and p ∈ Q are rational numbers.

Let us clarify the rules of A
Sp
2 -valued moment transformations under

geometrical distortions of the initial 2D images. We will consider trans-
lation, rotation and scaling transformations. If f(z) is the initial image,
then fv,w(z) = f(v(z + w)) denotes its geometrical distorted copy.

Theorem 3 The central moments ṁp{f} of the image f(z) are relative
A

Sp
2 -valued invariants

Jp{fv,w} := ṁp{fv,w} = vp|v|2ṁp{f}
with respect to the affine group Aff(GC

Sp
2 ) with A

Sp
2 -valued multipliers

vp|v|2 = eIpϕ|v|p+2 (see Fig. 7), and the normalized central A
Sp
2 -
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valued moments Np{fv,w} : = ṁp{fv,w}ṁp−1
0 {fv,w}/ṁp

1{fv,w} are ab-
solute A

Sp
2 -valued invariants with respect to the same group, i.e., Ip =

Np{fv,w} = Np{f}.

f(z)
v(z + w)

f(v(z + w))

M

vp|v|2ṁp{f(z)}
vp|v|2

ṁp{f(z)}

M

�
�

�

�

Figure 7. Transformations of �Sp
2 -valued moments with respect to the affine group

Aff(��Sp
2 )

Let us consider a 3D grey-level image f(x, y, z). This image can be con-
sidered as a function of a generalized quaternion variable q = (xI +yJ +
zK), i.e., f(x, y, z) = f(q), where q ∈ Vec{ASp

4 } = GR3. Let c be the
centroid of the image f(q).

Definition 9 Functionals of the form

Mp{f} :=
∫
q∈��3

(q − c)f(q)dq

are called the one-index central A
Sp
4 -valued (quaternion-valued) mo-

ments of the grey-level 3D image f(q), where p ∈ Q, and dq := dxdydz.

Let us clarify the rules of moment transformations with respect to geo-
metrical distortions of 3D images. These distortions will be caused by
1) 3D translations q −→ q + w, 2) 3D rotations q −→ Q0(q + w)Q−1,
where Q0 = eu0φ/2, 3) dilatation: q −→ λq, where λ ∈ R+. If f(q) is
an initial image and fλ�0w(q) its distorted version, then fλ�0w(q) :=
f(λQ0(q + w)Q−1

0 ).

Theorem 4 The central moments Mp{f} of the 3D grey-level image
f(q) are relative A

Sp
4 -valued invariants

Jp {fλ�0w} := Mp{fλ�0w} =
(
λp+3Q

p
0

)
Mp{f}

(
Q
−p
0

)
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f(q)
λQ0(q + w)Q−1

0

f(λQ0(q + w)Q−1
0 )

M

λp+3Q
p
0AMp{f(q)}Q−p

0

λp+3Q
p
0{·}Q−p

0
Mp{f(q)}

M

�
�

�

�

Figure 8. Transformations of �Sp
4 -valued moments with respect to the group

Aff(��Sp
3 )

with respect to the group Aff(GC
Sp
3 ) with left A

Sp
4 -valued multipliers λp+3Q

p
0

and with right A
Sp
4 -valued multipliers Q

−p
0 , respectively (see Fig. 8), and

the absolute values of normalized central moments

|Np| =
∣∣∣Mp{fλ�0w(q)}Mp−1

0 {fλ�0w(q)}
∣∣∣
/∣∣∣Mp−1

1 {fλ�0w(q)}
∣∣∣

are absolute scalar-valued invariants with respect to the same group, i.e.,
Ip = |Np{fλ�0w}| = |Np{f}|.

4.3 Moments and invariants of color 2D and 3D
images

Let GC
Sp
2 := {z = x1 + Ix2 | x1, x2 ∈ R; I2 = −1, 0,+1} be a gen-

eralized spatial complex plane. Then the color image fcol(x, y) can be
considered as a triplet-valued function of the generalized complex vari-
able z = x1 + Ix2, i.e., as fcol(x, y) = fcol(z), where z ∈ GC

Sp
2 . Let

z ∈ GC
Sp
2 be spatial and A ∈ ACol

3 be color triplet numbers. Then all
products zA will be called spatial-color numbers (or Hurwitz numbers).
They form the 6D space-color Hurwitz algebra A

SpCol
6 := A

Sp
2 ⊗ ACol

3 .
We assume that all spatial hyperimaginary units commute with all color
units. Therefore, A

SpCol
6 = A

Sp
2 ⊗ ACol

3 = ACol
3 ⊗ A

Sp
2 . Let c be the

centroid of the image fcol(z).

Definition 10 Functionals of the form

Ṁp =
∫
z∈�Sp

2

(z − c)pfcol(z)dz
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are called the central A
SpCol
6 -valued moments of the color image fcol(z).

Let A = (alu, zch) ∈ ACol
3 . Let us clarify the rules of moment transfor-

mations with respect to distortions of color and geometry of the initial
images. If fcol(z) is the initial image, then v,wf�col(z) = Afcol(v(z+w)) =
aluflu(v(z + w)) · elu + zchfch(v(z + w)) · Ech denotes its LCG(3)-color
and Aff(GC

Sp
2 )-geometrical distorted copy.

Theorem 5 The central moments Ṁp of the color image fcol(z) are
relative A

SpCol
6 -valued invariants

Jp{v,wf�col} := Ṁp{v,wf�col} = Avp|v|2Ṁp{fcol} (5)

with respect to the spatial-color group Aff(GC
Sp
2 )×LCG(3) with A

SpCol
6 -

valued multipliers Avp|v|2 (see Fig. 9), and the absolute values of the
normalized central moments

|Ṅp| =
∣∣∣Ṁp{v,wf�col}Ṁp−1

0 {v,wf�col}
∣∣∣
/∣∣∣Ṁp

1{v,wf�col}
∣∣∣

are absolute scalar-valued invariants, with respect to the same group,
i.e., Ip =

∣∣∣Ṅp{v,wf�col}
∣∣∣ =

∣∣∣Ṁp{fcol}
∣∣∣.

fcol(z)
v(z + w)

A

Afcol(v(z + w))

M

Avp|v|2Ṁp{fcol(z)}
Avp|v|2

Ṁp{fcol(z)}

M

�
�

�

�

Figure 9. Transformations of relative �SpCol
6 -valued moments with respect to the

spatial-color group Aff(��Sp
2 ) × �� � (3)

Let fcol(q) be a color 3D image depending on the pure vector generalized
quaternion variable q ∈ Vec{ASp

4 } = GR3. If q ∈ CR3 ⊂ A
Sp
4 is a

generalized quaternion and A ∈ ACol is a color number, then all products
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of the form qA are called spatial-color quaternions. They form a space-
color algebra ASpCol := A

Sp
4 ⊗ ACol = ACol ⊗ A

Sp
4 .

Definition 11 Functionals of the form

Ṁp{fcol} :=
∫
q∈��3

(q − c)fcol(q)dq

are called the one-index central ASpCol-valued moments of the color 3D
image fcol(q), where p ∈ Q, and dq := dxdydz.

Let us clarify the rules of moment transformations with respect to ge-
ometrical and color distortions of 3D color images. If fcol(q) is an
initial image and λ�wf�col(q) its distorted version, then λ�wf�col(q) :=
Afcol(λQ(q + w)Q−1).

fcol(q)
A

λQ0(q + w)Q−1
0

Afcol(λQ(q + w)Q−1)

M

λp+3Q
p
0AṀp{fcol(q)}Q−p

0

λp+3Q
p
0A{·}Q−p

0

Ṁp{fcol(q)}

M

�
�

�

�

Figure 10. Transformations of �SpCol-valued moments with respect to the spatial-
color group Aff(��Sp

3 ) × �� � (3)

Theorem 6 The central moments Ṁp{fcol} of the 3-dimensional color
image fcol(q) are relative ASpCol-valued invariants

Jp

{
f�λ�0w

}
:= Ṁp

{
f�λ�0w

}
=

(
Aλp+3Q

p
0

)
Mp{fcol}

(
Q
−p
0

)

with respect to the group Aff(GC
Sp
3 ) × LCG(3) with left ASpCol-valued

multipliers Aλp+3Q
p
0 and with right Spin(ASp

4 )-valued multipliers Q
−p
0 ,

respectively (see Fig. 10), and the absolute values of the normalized
central moments

|Np{λ�0wf�0
col}| =

∣∣∣Mp{λ�0wf�0
col}Mp−1

0 {λ�0wf�0
col}

∣∣∣
/∣∣∣Mp

1{λ�0wf�0
col}

∣∣∣
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are relative scalar-valued invariants, with respect to the same group,
i.e., Ip = |Np{λ�0wf�0

col}| = |Np{fcol}|.

5. Conclusions
We have shown how Clifford algebras can be used in the formation

and computation of invariants of 2D, 3D and nD color and multicolor
objects of different Euclidean and non-Euclidean geometries. The theo-
rems stated show how simple and efficient the methods of calculation of
invariants are that use spatial and color Clifford algebras. But how fast
can the invariants be calculated? The answer to this question the inter-
ested reader can find in [2], where Fourier–Clifford and Fourier–Hamilton
number theoretic transforms are used for this purpose.
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