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ABSTRACT. The purpose of this tutorial is to describe the interplay between three
subjects: function spaces, wavelet expansions, and multifractal analysis. Some rela-
tionships are now classical. Wavelet bases were immediately considered as remark-
able by analysts because they are unconditional bases of ‘most’ function spaces. This
property is a key feature of the denoising algorithms of Donoho, for instance. mul-
tifractal analysis tries to derive the Hausdorff dimensions of the Holder singularities.
Wavelet techniques proved the most efficient tool in the numerical computation of the
spectra of singularities of turbulent flows.

Our purpose is first to present these points, and then to show how ideas have
developed in the recent interplay between these three fields.

Refinements of the numerical techniques introduced to compute turbulence spec-
tra have led to the introduction of new function spaces, which turn out to be the right
setting to determine the fractal dimensions of graphs, and offer natural extensions of
the Besov spaces to negative p’s.

The ‘function space setting’ allows one to derive Baire-type results for the value
of spectra.

Keeping the histograms of wavelet coefficients gives richer information than just
keeping the moments of these histograms (which corresponds to keeping only the
knowledge of the function spaces to which the function belongs). We compare the
probabilistic results (obtained from histograms) with the above Baire-type results.

1. Introduction

We will describe the interplay between three subjects: function spaces, wavelet expan-
sions, and multifractal analysis. Some relationships are now well established:
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� Wavelet bases were immediately considered as remarkable because they are uncondi-
tional bases of ‘most’ function spaces. This property has very practical implications;
for instance, it is a key feature of the signal denoising algorithms introduced by David
Donoho and his collaborators, see [11].

� The purpose of the multifractal formalism introduced by Uriel Frisch and Georgio
Parisi is to derive the Hausdorff dimensions of the Hölder singularities of a function
(the so-called ‘spectrum of singulgularities’) from the knowledge of the Besov spaces
to which this function belongs, see e.g. [17].

� Among the several variants of the multifractal formalism that have been introduced,
those based on wavelet techniques proved the most efficient for the numerical compu-
tation of the spectra of singularities of turbulent flows, see [2].

We will present these topics, and show how ideas which developed in these three fields
interplayed recently; we will particularly focus on the following points:

Refinements of the numerical techniques introduced to compute turbulence spectra have
led to the introduction of new function spaces, which recently found unexpected applications:
they turn out to be the right setting to determine the fractal dimensions of graphs, and they
offer natural extensions of the Besov spaces Bs;q

p
when the exponent p takes negative values.

The knowledge of the Besov spaces to which a collection of functions belongs allows one
to derive quasi-sure results (in the sense of Baire’s categories) for the value of the spectra of
singularities of these functions.

In image or signal processing, Besov regularity is usually a by-product, deduced from
the knowledge of the histogram of the wavelet coefficients at each scale j; so that more
information is actually available. We will determine the maximal information which can be
derived from the wavelet histograms and is independent of the wavelet basis chosen. Note
that working on histograms of wavelet coefficients is not new; for instance cascade-type
models for the evolution of the p.d.f. (probability density function) of the wavelet coefficients
through the scales have been proposed to model the velocity in the context of fully developed
turbulence, see [3]. We will compare probabilistic results (obtained from drawing at random
wavelet coefficients at each scale inside such a preassigned sequence of histograms) with the
Baire-type results.

2. Wavelets as unconditional bases of Besov spaces

The most important basis in analysis has certainly been the trigonometric system. This
is so because the resolution of several key problems in physics is particularly simple when
formulated in this setting. Unfortunately, the convergence of the corresponding series posed
important mathematical problems since Du Bois-Reymond showed in 1873 that the Fourier
series of a continuous function may diverge. (See [23] where the fine properties of Fourier se-
ries and the development of ideas that led to wavelet analysis are described.) Is this phenom-
enon inherent to any orthogonal decomposition? Hilbert posed this problem to his student
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Alfred Haar, who gave a negative answer in his thesis by constructing in 1909 the following
orthonormal basis of L2([0; 1]). It is composed of the function 1, and of the  j;k defined by

(2.1)  j;k(x) = 2j=2 (2jx� k)

where j > 0, k = 0; : : : 2j�1,  (x) = 1[0;1=2]�1[1=2;1], and 1A denotes the characteristic func-
tion of the set A. One can also omit the function 1, but use all positive and negative integer
values of j and k and thus obtain an orthonormal basis of L2(IR). Haar showed that the partial
sums of the decomposition of a continuous function in this basis are uniformly convergent.
The comparison with the trigonometric system is striking: A basis composed of discontin-
uous functions is more adapted to the analysis and reconstruction of continuous functions
than the trigonometric system, though this system is composed of C1 functions. The Haar
basis has another important property which the trigonometric system lacks: Marcinkiewicz
showed in 1937 that it is an unconditional basis of the spaces Lp when 1 < p < 1; this
means that any function of Lp can be written in only one way as

P
cj;k j;k and the conver-

gence is unconditional, i.e. does not depend on the order of summation. This result still has
important implications in current research. In 1999, Bourgain, Brezis and Mironescu used the
characterization of Lp on the Haar basis as a key tool in the lifting problem, which consists
in determining if any function f which belongs to a given function space and satisfies jf j = 1
can be written f(x) = ei�(x) where � belongs to the same function space. (When the answer
is positive, this is a key-step in the linearization of some nonlinear PDEs where the constraint
jf j = 1 is imposed by the physics, such as in the Ginzburg-Landau model, see [8].)

Of course, since the Haar basis is not composed of continuous functions, it cannot be a ba-
sis for spaces of continuous functions. This last remark motivated researches to ‘smooth’ the
Haar basis. The goal was to construct bases of the similar algorithmic type, and which would
be unconditional bases of as many function spaces as possible. In 1910, Faber considered on
[0; 1] the basis composed of 1, x and the primitives of the Haar basis. This Schauder basis
(so-called because it was rediscovered by Schauder in 1927) has the same algorithmic form as
the Haar basis: it is still of the type (2.1) where  is the primitive of the Haar wavelet. Faber
showed that this system is a basis of the continuous functions on [0; 1]. The price to be paid
is that it is no longer a basis of L2. Should one necessarily lose on one hand what has been
obtained by the other? In 1928, Franklin showed that you can have your cake and eat it by
applying the Gram-Schmidt orthonormalization procedure to the Schauder basis, thus obtain-
ing a basis which is simultaneously unconditional for all spaces Lp([0; 1]) (1 < p < 1), for
C([0; 1]) and for the Sobolev spaces of low regularity. One can go on and iterate one step of
integration (which regularizes) and one step of Gram-Schmidt orthonormalization; Ciesielski
thus constructed in 1972 bases which are unconditional for a wider and wider range of func-
tion spaces on [0; 1]. Of course, applying the Gram-Schmidt orthonormalization procedure
iteratively makes these bases essentially impossible to compute numerically: Something has
been lost in the end: algorithmic simplicity. It is therefore no wonder that the Ciesielski bases
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were never used in practical applications. (Note that this is in sharp contrast to the Haar basis
which, despite its lack of regularity, has been widely used in image processing.)

However, algorithmic simplicity and regularity can go together. In 1981, Strömberg had
the idea of applying the Gram-Schmidt orthonormalization on the whole line instead of on
[0; 1] (loosely speaking, one starts the orthonormalization at �1). Because of the dilation
and translation invariance of the real line, this substitute of the Shauder basis now has the
exact algorithmic form (2.1). Starting the orthonormalization with B-splines of arbitrary high
degree, Strömberg thus constructed orthonormal wavelet bases of arbitrarily large regularity.
These bases are unconditional for a wider and wider range of Sobolev or Besov spaces. The
ultimate perfection was found by Yves Meyer and Pierre-Gilles Lemarié who constructed, in
1986, C1 wavelets ( (i))i=1;:::;2d�1 such that the functions

(2.2) 2dj=2 (i)(2jx� k); j 2 Z; k 2 Zd

form an orthonormal basis of L2(IRd); this basis allows one to characterize functions of
arbitrary regularity (or distributions of arbitrary irregularity by duality), see [27]. In order to
be more specific, we start by introducing some notation.

Wavelets and wavelet coefficients will be indexed by dyadic cubes: �will denote the cube
�j;k = k2�j + [0; 2�j]d,  � will denote the wavelet  (i)(2jx � k) (note that we ‘forget’ to
write the index i of the wavelet, which is of no consequence). Thus

(2.3) f(x) =
X
�

c
�
 
�
(x);

where the wavelet coefficients of f are given by

c
�
=

Z
IRd

2dj 
�
(t)f(t)dt:

(Note that we do not use the usual L2 normalization; the natural normalization for the prob-
lems we will consider is the L1 normalization.)

Let p 2 (1;+1) and s > 0; by definition, the Sobolev space Lp;s(IRd) is composed of the
functions of Lp(IRd) whose fractional derivatives of order s also belong Lp(IRd). A function
f belongs to Lp;s(IRd) if and only if its wavelet coefficients c

�
satisfy the following condition,

see [29]

(2.4) f 2 Lp;s(IRd),

 X
�;i

jc
�
j
2(1 + 22sj)1�(x)

!1=2

2 Lp:

(Note the sharp contrast with Fourier series: When p 6= 2, there exists no characterization of
Lp;s by conditions on the moduli of the Fourier coefficients.)

These characterizations are quite difficult to handle and, in the context of wavelet analysis,
Besov spaces are preferred for the two following reasons:
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� They are very close to the Sobolev spaces, as shown by the following embeddings

8� > 0; 8p > 1; 8q; Lp;s+� ,! Bs;p

q
,! Lp;s��:

� They have a very simple wavelet characterization, see [7], [26] and [29],

(2.5) f 2 Bs;q

p
(IRd)()

 X
i;k

jc
�
2(s�

d
p
)j
j
p

!1=p

= �j with (�j)j2Z 2 l
q:

Note that in all such characterizations, wavelets are assumed to be smooth enough, say, with
at least derivatives up to order [s]+1 having fast decay (see [7] for optimal regularity assump-
tions on the wavelets). In sharp contrast with the Sobolev case, Besov spaces are defined for
any p > 0.

The global regularity information about a function f is given by its Besov domain Bf ,
which is the set of (q; s) such that f belongs to Bs;1=q

1=q;loc
. By interpolation, the Besov domain

has to be a convex subset of IR2, and the Besov embeddings imply that, if (q; s) belongs to
Bf , then the segment joining (q; s) and (0; s � dq) also belongs to Bf , see [31]. It follows
that the boundary of the Besov domain is the graph of a function s(q) which is concave and
satisfies

(2.6) 0 6 s0(q) 6 d:

The following proposition of [19] shows that (2.6) characterizes the possible functions s(q).

PROPOSITION 1. Any concave function that s(q) satisfies (2.6) defines the boundary of
the Besov domain of a distribution f .

One of the reasons for the success of wavelet decompositions in applications is that they
often lead to very sparse representations of signals. This sparsity can be characterized by
determining to which Besov spaces Bs;q

p
the function considered belongs when p is close to

0. Let us illustrate this assertion by an example. Consider the function

H(x) = 1 if jxj 6 1;
= 0 elsewhere,

and suppose that the wavelet used is compactly supported, say on [�A;A]. For each j, there
are less than 4A non-vanishing wavelet coefficients, so that the wavelet expansion of f is
extremely sparce. Since H(x) is bounded, jc

�
j 6 C 8�. Using (2.5), it follows that H(x)

belongs to Bs;q

p
(IR) as soon as s < 1=p. Let us check that, conversely, this property is a way

to express that the wavelet expansion of f is sparce. We suppose that a bounded function f
satisfies

8p; q > 0; 8s <
1

p
; f 2 Bs;q

p
(IR):
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We claim that 8A > 0, 8� > 0, at each scale j there are less than C(�; A)2�j coefficients of
size larger than 2�Aj. Indeed, if it were not the case, taking p = �=(2A), we get

P
k
jc�j

p
!

+1 when j ! +1, hence a contradiction.
Here is another illustration of the relationship between sparcity of the wavelet expansion

and Besov regularity. Suppose that f belongs to\
p>0

Bd=p;p

p
(IRd) :

Going back to (2.5), this condition exactly means that the sequence c
�

belongs to lp for all
p > 0, which is also equivalent to the fact that the decreasing rearrangement of the sequence
jc
�
j has fast decay, which, again, is a way to express sparcity, see [21].
Besov spaces when p < 1 are no longer locally convex, which partly explains the diffi-

culties met when using them. Before the introduction of wavelets, these spaces were either
characterized by the order of approximation of f by rational functions whose numerator and
denominator have a given degree, or equivalently by the order of approximation by splines
with ‘free nodes’ (which means that the points where the piecewise polynomials are con-
nected are left free, and can thus be fitted to the function considered), see [10] and [21].
However such characterizations were much more difficult to handle, and of hardly any use in
numerical applications.

3. Beyond Besov spaces: oscillation spaces

One important drawback when using Besov spaces is that any information concerning
possible correlations on the position of large wavelet coefficients is lost, since the wavelet
norm (2.5) is clearly invariant under permutations of the wavelet coefficients at the same
scale; this can be a drawback. For instance, piecewise smooth functions clearly have their
large wavelet coefficients located at the singularities, so that such functions exhibit very
strong correlation between the positions of large wavelet coefficients. Let us show another
occurrence of this problem, concerning the computation of the fractal dimensions of graphs.

DEFINITION 1. Let K be a bounded subset of IRd+1, N(K; j) will denote the number
of dyadic cubes of size 2�j necessary to cover K. The fractal dimension of K (also called
upper box dimension) is

dimb(K) = lim sup
j!1

logN(K; j)

j log 2
:

If K is the graph of a compactly supported continuous function, N(K; j) is related to the
oscillation of f .

DEFINITION 2. Let � be a dyadic cube included in IRd; if f is a continuous, real valued
function defined on IRd, let

(3.1) osc(f; �) = sup
x2�

f(x)� inf
x2�

f(x)
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denote the oscillation of f on the cube �. The p-oscillation of f at scale j is defined by

Oscp(f; j) =
X
k

(osc(f; �j;k))
p

where �j;k is the dyadic cube k2�j + 2�j[0; 1]d (when p = 1 one uses the term ‘oscillation’
instead of ‘1-oscillation’). The p-oscillation exponent is

!p(f) = lim inf
j!1

log (Oscp(f; j))

log(2�j)
:

(The p-oscillation is a variant of the p-variation, see [18].) It follows easily that there exist
two positive constants C and C 0 such that

(3.2) C
�
2dj + 2jOsc1(f; j)

�
N(Graph(f); j) 6 C 0

�
2dj + 2jOsc1(f; j)

�
:

Let us explain by an example why the box dimension of a graph cannot be deduced from
the Besov domain of a function; we use essentially a construction due to Anna Kamont and
Barbara Wolnick, cf [25].

Consider the following function: Let j1 >> j0 >> 0; all wavelet coefficients of f ,
defined on [0; 1], vanish for j 6 j1; at the scale j1, there are 2j1�j0 nonvanishing wavelet
coefficients of size 2��j1 . Let us now consider the two extreme possibilities:

� All nonvanishing wavelet coefficients are packed in the 2j1�j0 first locations (k =
1; : : : ; 2j1�j0). In this case, the oscillation at the scale 2�j0 vanishes, except for the two
first dyadic intervals, for which it is � 2��j1 .

� If the nonvanishing wavelet coefficients are equidistributed, the oscillation at the scale
2�j0 is � 2��j1 on each dyadic interval of length 2�j0 .

The total oscillation at scale 2�j0 is thus � 2��j1 in the first case, and � 2j0��j1 in the
second. We can pick j0 and j1 such that the oscillations in both cases are not of the same
order of magnitude. By piling up this construction on an infinite number of scales, it is easy
to construct two functions with the same histograms of wavelet coefficients at each scale, and
different box dimensions of graphs. The problem here is that the box dimension of graphs is
clearly altered by clustering or spreading the large wavelet coefficients. Therefore, it can be
measured only by norms that are able to take such phenomena into account. It is the purpose
of the oscillation spaces which allow one to derive p-oscillation exponents from the wavelet
coefficients. In the following, �0 denotes the dyadic cube k02�j

0

+ [0; 2�j
0

]d.

DEFINITION 3. Let p > 0, and s; s0 2 IR; then a function f belongs to Os;s0

p
(IRd) if its

wavelet coefficients satisfy

(3.3) sup
j2Z

2sj

 X
k

sup
�0
��

jc�02s
0j0

j
p

!1=p

<1:

The left hand-side defines the Os;s
0

p
(IRd)-seminorm.
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Proposition 2 will imply that this definition is independent of the wavelet basis chosen.
Note that this definition exhibits the property we were looking for, and that Besov spaces
were lacking. Namely, because of the sup�0

�� that appears in the definition, two functions
that share the same histograms of wavelet coefficients at all scales may have very different
O

s;s
0

p
norms, depending upon whether the large wavelet coefficients are more or less clustered.

oscillation spaces take into account the geometric disposition of the wavelet coefficients.

THEOREM 1. If f belongs to C �(IRd) for an � > 0, the p-oscillation exponent of f is
given by

!p(f) = supfs : f 2 Os=p;0
p

g = lim sup
j!+1

log

0
@X

�2�j

sup
�0
��

jc�0j
p

1
A

j log 2
:

The spaces Os;s0

p
are defined by conditions on the wavelet coefficients, therefore one first

has to check that their definition is intrinseque, i.e., independent of the wavelet basis chosen.
One way to do it, following [29], is to check that condition (3.3) is invariant under the action
of the “infinite matrices” which belong to the algebrasM for  large enough; these algebras
are defined as follows, see [29]: A(�; �0) (indexed by the dyadic cubes) belongs toM if

jA(�; �0)j 6
C 2�(

d
2
+)(j�j0)

(1 + (j � j 0)2)(1 + 2inf(j;j0)dist(�; �0))d+
:

Matrices of operators which map a wavelet basis onto another belong to these algebras, and
more generally matrices (on wavelet bases) of pseudodifferential operators of order 0, such as
the Hilbert transform in dimension 1, or the Riesz transforms in higher dimensions, see [29].
We denote by Op(M) the space of operators whose matrix on a wavelet basis belongs to
M

 . The following proposition is proved in [18].

PROPOSITION 2. If  > sup(jsj; js0j), then the operators which belong to Op(M) are
continuous on Os;s

0

p
(IRd).

The following corollary is an immediate consequence of (3.2) and Theorem 1.

COROLLARY 1. Let f : IRd
! IR be a compactly supported function which belongs to

C�(IRd) for an � > 0. Then

dimb(Graph(f)) = sup
�
d; 1� supfs : f 2 Os;0

1 g
�
:

Similarly, Kamont recently proved the following wavelet characterization of the lower
box dimension of a graph in terms of the wavelet expansion of the function, see [24]. The
lower box dimension of a set K is by definition

dimb(K) = lim inf
j!1

logN(K; j)

j log 2
:
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THEOREM 2. Let f : IRd
! IR be a compactly supported function which belongs to

C�(IRd) for an � > 0; let

�j =
X
k

sup
�0
��

2dj
0=2
jc�0 j; and Yj = 2j(d�1) sup

06j06j

 
2�j

0( d
2
�1)
X
k0

jc�0j

!
;

then

dimb(Graph(f)) = 1 + lim inf
j!1

log(�j + Yj + 2j(d�1))

j log 2
:

Another (much more difficult) problem concerning the fractal nature of graphs is to de-
termine their Hausdorff dimension. Let us recall the definition of the Hausdorff dimension of
a subset A � IRd. For " > 0, let

Md

"
= inf

R

X
i

"d
i
;

where R is a generic covering of the set A by balls Bi of diameter "i 6 ", Then

dimH(A) = supfd : lim
�!0

Md

�
= +1g = inffd : lim

�!0
Md

�
= 0g:

Extending the previously mentioned techniques, François Roueff proved that, if f 2 C �

for an � > 0, the Hausdorff dimenson of the graph of f is bounded by d+ 1� supfs : f 2
B

s;1

1 g (actually, some sharper estimates can be found in [32]).
The wavelet characterization given by Corollary 1 has implications in rugosimetry. In-

deed the fractal dimension of a surface has been shown to be a pertinent way to model the
notion of rugosity, see [12]. (In [33] other generalizations of Sobolev spaces are introduced
following this motivation.) Therefore, finding a numerically stable algorithm to measure this
fractal dimension became an important issue. Numerical algorithms based on the oscillation
are discussed in [12]; alternative algorithms based on the wavelet characterization of Corol-
lary 1 should prove numerically more stable, since they wouldn’t be based directly on the
pointwise value of the function, but on wavelet coefficients, which are averaged quantities,
and, as such, are less sensitive to noise.

Let us end this section by mentioning a remarkable property of oscillation spaces. In
the multifractal formalism that we will present in the next section, the spectrum of singul-
gularities of a function f is deduced from its Besov domain by a Legendre transform. One
drawback of this approach is that Besov spaces are defined only for positive p’s. Thus, at best,
this method allows one to recover the increasing part of the concave hull of the spectrum; ob-
taining the decreasing part would involve the extension of the Besov domain for negative p’s,
which is clearly absurd when starting from any of the usual definitions of Besov spaces. On
the contrary, oscillation spaces have a natural extension to negative p’s. Let us sketch how
this extension can be derived. First, we remark that Definition 3 can be rewritten

(3.4) 8j 2 Z
X
k

�
sup
�0
��

jc�02s
0
j
0

j

�p

6 C2�spj:
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Note that, in particular, applying this condition for j = 0, we obtain that, for any j 0 > 0,
jc�0j 6 C2�s

0
j
0

, or, in other words, f 2 Cs
0

(IRd). Conversely, the condition f 2 Cs
0

(IRd) is
necessary to make sure that the suprema in (3.4) are finite. Therefore, we adopt the following

DEFINITION 4. Let p < 0, and s; s0 2 IR; then a function f belongs to Os;s0

p
(IRd) if f

belongs to Cs
0

(IRd) and if its wavelet coefficients satisfy

8j 2 Z
X
k

�
sup
�0
��

jc�02s
0
j
0

j

�p

6 C2�spj:

The remarkable property of this definition is that it is ‘almost’ independent of the wavelet
basis (in the Schwartz class) which is chosen. More precisely, the spaces

T
s00>s

O
s
00
;s

0

p
are

‘intrinseque’, i.e., are independent of the wavelet basis, and more generally are invariant
under the action of an operator whose matrix A satisfies

A 2
\
>0

M
 and A�1 2

\
>0

M
:

4. Multifractal analysis and the Frisch-Parisi formula

Large classes of signals exhibit a very irregular behavior. In the wildest situations, this
irregularity may follow different regimes, and can switch from one regime to another almost
instantaneously. This is the case for recordings of speech signals; precise recordings of tur-
bulence data (which became available at the beginning of the 80s) showed that turbulence
also falls in this category. Such signals cannot be modeled by standard stationary increments
processes, such as fractional brownian motions. The techniques of multifractal signal analy-
sis have been specifically designed to analyze such behavior. Initially developed in the mid
80’s in the context of turbulence analysis, they were applied successfully to a large range of
signals, including traffic data (cars and internet), stock market prices, speech signals, texture
analysis, DNA sequences...(see [1] and [28] for instance).

We start by introducing the definitions related to pointwise regularity. Let � be a positive
real number and x0 2 IRm; a function f : IRm

! IR is C�(x0) if there exists a polynomial P
of degree less than � such that

(4.1) jf(x)� P (x� x0)j 6 Cjx� x0j
�:

The Hölder exponent hf(x0) is the supremum of all the values of � such that (4.1) holds.
We are interested in analyzing signals whose Hölder exponent may widely change from point
to point. This instability usually makes the task of determining the Hölder exponent hf(x)
very difficult numerically. This is the case for multifractal functions, where the Hölder expo-
nent jumps from point to point. In that case, points with a given Hölder exponent form fractal
sets, and one is not interested in determining the exact value of the Hölder exponent at every
point but rather in extracting some relevant information concerning the size and geometry of
the Hölder singularities. The relevant quantity is the spectrum of singulgularities.
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DEFINITION 5. Let AH be the set of the points x where hf(x) = H . The domain of
definition of the spectrum of singulgularities d(H) is the set of H’s such that AH is not
empty. If this is the case, d(H) is the Hausdorff dimension of AH . Otherwise, if H is not a
value taken by hf , d(H) = �1.

It is clearly impossible to estimate numerically the spectrum of singulgularities of a signal
since it involves the successive determination of several intricate limits, and a blind applica-
tion of the formula giving the definition of the Hausdorff dimension would yield enormous,
totally unstable calculations. The only method is to find some ‘reasonable’ assumptions under
which the spectrum could be derived using only averaged quantities (which should be numer-
ically stable) extracted from the signal. Such formulas, called multifractal formalisms, were
inferred first by physicists.

The initial formulation asserts that the spectrum of Hölder singularities of a function can
be recovered from the scaling function �f(p), defined for p > 0 by

�f (p) = supfs : f 2 Bs=p;p

p
g = d+ lim inf

j!+1

 
log

 X
k

jc
�
j
p

!!
=(log 2�j):

It follows immediately from the definition of s(q) that

(4.2) �f (p) = ps(1=p):

The multifractal formalism may be surprising at first sight because it relates pointwise be-
havior (Hölder exponents) to global estimates (Besov regularity). Before studying its mathe-
matical validity, it may be enlightening to give the heuristic argument from which it is derived.
Though this argument cannot be transformed into a correct mathematical proof, it shows at
least why these formulas can be expected to hold, and a careful study of its implicit asump-
tions shows its limitations. This argument can be decomposed into four steps, each involving
specific asumptions that we will state explicitely in order to make clear the conditions under
which the formalism can be expected to hold. It is initially based on the following character-
ization of the Hölder exponent based on decay estimates of the wavelet coefficients, see [14]
(or [20] for the sharpest results).

PROPOSITION 3. If f belongs to C �(IRd) for an � > 0 (i.e. if jc
�
j 6 C2��j), the Hölder

exponent of f at each point x0 is given by

(4.3) hf (x0) = lim inf
j!1

inf
k

log(jc
�
j)

log(2�j + jk2�j � x0j)
:

Step 1: The first asumption in the derivation of the multifractal formalism is that the
Hölder exponent of f at every point x0 is given by the rate of decay of the wavelet coefficients
of f in a cone jk2�j � x0j 6 C2�j. Coming back to (4.3), if these coefficients decay like
2�Hj, we expect that hf (x0) = H . This statement is wrong in full generality but is true under
the hypothesis that f has only cusp-type singularities (see [30]).
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Step 2: We estimate, for each H , the contribution of the Hölder singularities of exponent
H to the quantity

(4.4)
X
k

jc
�
j
p:

Each such singularity brings a contribution of C2�Hpj. We need about 2d(H)j cubes of width
2�j to cover these singularities; the total contribution of the Hölder singularities of exponent
H to (4.4) is thus

(4.5) 2d(H)j2�Hpj = 2�(Hp�d(H))j :

This is clearly a critical step in the argument; it involves an inversion of limits which supposes
that all Hölder singularities start to have coefficients � 2�Hj at a certain scale J , and that the
Hausdorff dimension is estimated as a box dimension. It is remarkable that the multifractal
formalism is valid in many situations where these two hypotheses do not hold.

Step 3: This consists of a steepest descent argument. When j ! +1, among the terms
(4.5), the one which yields the main contribution to (4.4) is obtained for the exponent H
realizing the infimum of Hp� d(H); hence

�(p)� d = inf
H

(Hp� d(H)) :

Step 4: If d(H) is a concave function, �d(H) and ��(p) + d are convex conjugates, and
each can be recovered from the other by a Legendre transform; it follows that

(4.6) d(H) = inf
p>0

(Hp� �(p) + d) :

The hypothesis that d(H) is a concave function is often wrong; there are three ways to counter
this difficulty:

� Stop at Step 3, and check that �(p) is the Legendre transform of d(H); however this
weak form of the multifractal formalism is of little interest since d(H) is the mathe-
matical object of interest, and �(p) is the only computable quantity in practice.

� Assert that we thus obtain only the convex hull of the spectrum. This is fine when
the function obtained is strictly concave, but it yields ambiguous information when
it contains straight segments, which is often the case. Do these segments correspond
to effective points of the spectrum, or are they just the convex hull in a non-concave
region?

� Do not use the partition function (4.4, but instead deal directly with histograms of
wavelet coefficients; we will discuss this approach in the next section.

There exist several mathematical examples where the Hölder exponent can be analyti-
cally determined, and the validity of the multifractal formalism has been successfully tested
(including selfsimilar functions (see [17] and [6]), specific historical functions, (see [16], and
references therein) and Lévy processes, see [15]). These examples give some insight about
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sufficient conditions for the validity of the multifractal formalism. In each case, the function
(or its wavelet transform) exhibits some selfsimilarity (deterministic or statistical).

5. Multifractal formalism: Mathematical results

To simplify some arguments, we suppose from now on that the functions we consider are
defined on IR, are 1-periodic, belong to C�(IR), and that we use one-dimensional periodized
wavelets.

5.1. Upper bounds for spectra

We start by describing bounds on spectra of singularities which hold in full generality.
These bounds are based on histograms of wavelet coefficients, so that we start by defining
relevant quantities derived from these histograms. For each j, let

(5.1) Nj(�) = #
�
jCjkj > 2��j

	
:

If �(�; �) = lim sup
j!1

j�1 log2(Nj(�+ �)�Nj(�� �)), we note ~�(�) = inf
�>0

�(�; �). (There

are about 2~�(�)j coefficients of size of order 2��j .) The scaling function �f(p) can be derived
from the wavelet histograms by

(5.2) �f (p) = lim inf
j!+1

�
�1

j
log2(2

�j

Z
2��pjNj(�)d�)

�
:

Indeed, by definition of Nj ,
P

k
jc
�
j
p =

R
2��pjdNj(�). The following result of [19] gives

the relationship between the “Besov approach” and the “wavelet histograms approach”. It is
a direct consequence of (5.2) and shows that �f (p) can be deduced from ~�(�) by a Legendre
transform. Note that ~�(�) cannot be recovered from �f (p); only its convex hull can. Therefore
~�(�) contains more information on f than �f(p).

PROPOSITION 4. For any function f ,

(5.3) �f(p) = inf
�>0

(�p� ~�(�) + 1) :

The following proposition gives the optimal upper bound on d(H) that can be derived
from the wavelet histograms.

PROPOSITION 5. If f 2 C �(IR) for an � > 0, then

(5.4) d(H) 6 H sup
�2[0;H]

~�(�)

�
:

If f 2 C�(IR) for an � > 0, there exists a unique critical exponent pc such that �f(pc) = 1;
(5.4) easily implies the classical bound

(5.5) d(H) 6 inf
p>pc

(pH � �f (p) + 1);
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of [17]. Nonetheless (5.4) clearly yields a sharper estimate if ~�(�) is not concave. Thus,
strictly more information can be deduced from the histograms of wavelet coefficients than
from the scaling function. Note that, though (5.4) can be sharper than (5.5), nonetheless (5.5)
is optimal in the sense that no better upper bound can be deduced in full generality, as we will
see.

The optimal bounds (5.4) and (5.5) allow one to propose alternative formulas for the
multifractal formalism. The almost-sure multifractal formalism holds if (5.4) is saturated,
i.e. if

(5.6) d(H) = H sup
�2[0;H]

~�(�)

�
;

and the quasi-sure multifractal formalism holds if (5.4) is saturated, i.e. if

(5.7) d(H) = inf
p>pc

(pH � �f(p) + 1):

We will see in the next subsections general results concerning the validity of these formulas.
We conclude this section with a general remark on histograms of wavelet coefficients.

The precise values taken by the sequence Nj(�) clearly depend on the wavelet basis cho-
sen. One may wonder what is the maximal information that can be extracted from wavelet
histograms, and doesn’t depend on the particular wavelet basis chosen; or, more generally,
what is the maximal information that can be extracted from wavelet histograms, and is in-
trinseque, meaning here that it remains unchanged when applying to the sequence of wavelet
coefficients an operator A such that

(5.8) A 2
\
>0

M
 and A�1 2

\
>0

M
:

One can check that �(�) is not intrinseque, but that

�(�) = lim
�!0

 
sup

�0
2(�1;�+�]

�(�0)

!

is intrinseque, and that it is ‘maximal’, in the sense that any intrinseque quantity deduced
from �(�) can be deduced from �(�).

5.2. Quasi-sure results

This section describes results from [19]. Formula (5.7) certainly does not hold in full
generality, and it is extremely easy to construct counterexamples. On the other hand, each
time it has been shown to hold, it was the consequence of a functional equation satisfied
by the function under study (usually a selfaffinity property, either exact, approximate, or
stochastic). Therefore, the general consensus among mathematicians and physicists was that
the validity of the multifractal formalism must be a consequence of the precise inner structure
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of the function considered. Actually, the opposite is true; (5.7) holds for quasi-all functions,
i.e., outside a set of the first class of Baire. Let us explain more precisely what we mean.

The multifractal formalism, reformulated as above, states that if f belongs to the topo-
logical vector space

(5.9) V =
\

�>0;p>0

B
(�(p)��)=p;p

p;loc

then its spectrum of singulgularities satisfies (5.7).
The space V (= V�) is a Baire’s space, i.e., any countable intersection of everywhere

dense open sets is everywhere dense; we will see that, in V , the set of functions that satisfy
(5.7) contains a countable intersection of everywhere dense open sets of V , i.e., contains a
dense GÆ set (we say that quasi-all functions of V satisfy (5.7)). In order to precisely state
our result, we first have to determine what are the conditions satisfied by a function �(p) so
that it is a scaling function. The following definition follows directly from Proposition 1 and
(4.2); it characterizes scaling functions.

DEFINITION 6. A function �(p) : IR+
! IR is strongly admissible if s(0) > 0 and if

s(q) = q�(1=q) is concave and satisfies 0 6 s0(q) 6 1.

One immediately sees that if �(p) is strongly admissible, it is concave.

THEOREM 3. Let �(p) be a strongly admissible function and V be the function space de-
fined by (5:9). The domain of definition of the spectrum of singularities of quasi-all functions
of V is the interval [s(0); 1=pc] where

(5.10) d(H) = inf
p>pc

(Hp� �(p) + 1):

Remarks: Formula (5.10) states that the spectrum of quasi-all functions is composed of
two parts:

� A part defined by H < �0(pc) where the infimum in (5.10) is attained for p > pc, and
the spectrum can be computed as the ‘usual’ Legendre transform of �(p)

d(H) = inf
p>0

(Hp� �(p) + 1):

� A part defined by �0(pc) 6 H 6 1=pc where the infimum in (5.10) is attained for
p = pc, and the spectrum is a straight segment d(H) = Hpc.

This second case shows that the initial formulation of Frisch and Parisi (where the Legendre
transform is taken on all positive p’s) fails in this part of the spectrum. Comparing (5) and
(5.10) we see that quasi-all functions of V strive to have their Hölder singularities on a set as
large as possible.

The study of the properties of quasi-all functions with a given a priori regularity goes
back to the famous paper of Banach [5], which gives differentiability properties of quasi-
all continuous functions. Recently Z. Buczolich and J. Nagy proved in [9] that quasi-all
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monotone continuous functions on [0; 1] are multifractal with spectrum d(H) = H for H 2

[0; 1].

5.3. Almost-sure results from histograms

This section describes results from [4]. We start by describing the processes we will
study. We suppose that, at each scale j, the wavelet coefficients of the process are picked
independently from a given histogram. We denote by �j the common probability measure
of the 2j random variables Xj;k = �(log2 jc�j)=j (the signs of the wavelet coefficients have
no consequence for Hölder regularity; therefore, we do not need to make any assumption on
them). The measure �j thus satisfies

IP
�
log(jc

�
j) 6 2�aj

�
= �j((�1; a]):

We need to make two assumptions on the �j . The first one is

9� > 0 : Supp (�j) � [�;+1);

This assumption means that the sample paths belong to C �.
Let us now define some quantities that will be pertinent in our study. For each j, let

Nj(�) = # fk : jCjkj > 2��jg obtained after these 2j draws have been performed. There-
fore, IE(Nj(�)) = 2j�j([0; a]). Note that the word empirical will be used in the following
in relation to random quantities that are measured on the sample paths (as opposed to deter-
ministic quantities that are derived from the �j). We note

�(�) = lim
�!0

lim sup
j!+1

log2 (2
j�j([�� �; � + �]))

j
;

and ~�(�) is the corresponding empirical quantity already defined. The purpose of the fol-
lowing hypothesis is to make sure that some sizes of wavelet coefficients do not appear with
small but nonvanishing probability. If it holds, quantities deduced from histograms and sam-
ple paths will coincide.

(H)

8<
:

Either �(�) = �1 or �(�) > 0. If �(�) = 0, there exists
a subsequence jn and a sequence �n ! 0 such that
2jn�jn([�� �n; �+ �n]) > 2j2

n
:

PROPOSITION 6. If Hypothesis (H) holds, with probability one, 8� > 0 �(�) = ~�(�).

From now on, we suppose that �(�) > 0 for at least one �. Let

Hmax =

�
sup
�>0

�
�(�)

�

��
�1

:
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THEOREM 4. Let f be a random wavelet series satisfying (H). The spectrum of almost
every sample path of f has support included in [�;Hmax], where

(5.11) d(H) = H sup
�2[0;H]

�(�)

�
:

Remarks: By inspecting (5.11), it is clear that d(H) need not be concave, which shows
another possible occurrence of the failure of the standard multifractal formalism.

Comparing Proposition 5 and Theorem 4, we see that the spectrum d(H) of a random
wavelet series takes the largest possible values compatible with the bounds (5.4), which shows
that these bounds are optimal.
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[9] Z. BUCZOLICH AND J. NAGY Hölder spectrum of typical monotone continuous functions, Preprint,
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(1998).
[31] J. PEETRE New thoughts on Besov spaces, Duke Univ. Math. Ser. I (1976).
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