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Abstract. A introduction to particle filtering is discussed starting with an overview
of Bayesian inference from batch to sequential processors. Once the evolving Bayesian
paradigm is established, simulation-based methods using sampling theory and Monte
Carlo realizations are discussed. Here the usual limitations of nonlinear approxima-
tions and non-gaussian processes prevalent in classical nonlinear processing algorithms
(e.g. Kalman filters) are no longer a restriction to perform Bayesian inference. It is
shown how the underlying hidden or state variables are easily assimilated into this
Bayesian construct. Importance sampling methods are then discussed and shown how
they can be extended to sequential solutions implemented using Markovian state-space
models as a natural evolution. With this in mind, the idea of a particle filter, which is
a discrete representation of a probability distribution, is developed and shown how it
can be implemented using sequential importance sampling/resampling methods. Fi-
nally, an application is briefly discussed comparing the performance of the particle
filter designs with classical nonlinear filter implementations.
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1 Introduction

In this paper we develop the “Bayesian approach” to signal pro-
cessing for a variety of useful model sets. It features the next gen-
eration of processor that has recently been enabled with the ad-
vent of high speed/high throughput computers. The emphasis is
on nonlinear /non-gaussian problems, but classical techniques are
included as special cases to enable the reader familiar with such
methods to draw a parallel between the approaches. The common
ground is the model sets. Here the state-space approach is em-
phasized because of its inherent applicability to a wide variety of
problems both linear and nonlinear as well as time invariant and



time-varying including what has become popularly termed “physics-
based” models. Here we discuss the next generation of processors
that will clearly dominate the future of model-based signal process-
ing for years to come [1]. This paper discusses a unique perspective
of signal processing from the Bayesian viewpoint in contrast to the
pure statistical approach. The underlying theme of this paper is
the Bayesian approach which is uniformly developed and followed
throughout.

2 Bayesian Approach to Signal Processing

In this section we motivate the idea of Bayesian estimation from the
purely probabilistic perspective, that is, we do not consider underly-
ing models at all, just densities and distributions. Modern statistical
signal processing techniques evolve directly from a Bayesian per-
spective, that is, they are cast into a probabilistic framework using
Bayes’ theorem as the fundamental construct. Bayesian techniques
are constructed simply around Bayes’ theorem. More specifically,
the information about the random signal, x(t), required to solve a
vast majority of estimation/processing problems is incorporated in
the underlying probability distribution generating the process. For
instance, the usual signal enhancement problem is concerned with
providing the “best” (in some sense) estimate of the signal at time ¢
based on all of the data available at that time. The filtering distri-
bution provides that information directly in terms of its underlying
statistics. That is, by calculating the statistics of the process directly
from the filtering distribution, the enhanced signal can be extracted
using a variety of estimators like mazimum a posteriori, mazimum
likelihood, minimum mean-squared error accompanied by a variety
of performance statistics such as error covariances and bounds [1],
2].

We cast this discussion into a dynamic variable/parameter struc-
ture by defining the “unobserved” signal or equivalently “hidden”
variables as the set of N,-vectors, {z(t)},t =0,---, N. On the other
hand, we define the observables or equivalently measurements as the
set of Ny-vectors, {y(t)},t =0,---, N considered to be conditionally
independent of the signal variables. The goal in recursive Bayesian
estimation is to sequentially (in-time) estimate the joint posterior
distribution, Pr(z(0), -+, z(N);y(0),---,y(/N)). Once the posterior



is estimated, than many of the interesting statistics characterizing
the process under investigation can be exploited to extract mean-
ingful information.

We start by defining two sets of random (vector) processes: X; :=
{z(0),---,x(t)} and Y; := {y(0),-- -, y(t)}. Here we can consider X;
to be the set of dynamic random variables or parameters of interest
and Y; as the set of measurements or observations of the desired
process.! In any case we start with Bayes’ theorem for the joint
posterior distribution as

PI'(YHXt) X PI'(Xt) 1
Pr(v) W

In Bayesian theory, the posterior defined by Pr(X;|Y;) is decom-
posed in terms of the prior Pr(X), its likelihood Pr(Y;|X;) and the
evidence or normalizing factor, Pr(Y;). Each has a particular signif-
icance in this construct.

It has been shown [3] the joint posterior distribution can be ex-
pressed, sequentially, as the joint sequential Bayesian posterior es-
timator as

Pr(X,|V;) =

Pr(y(®)]z(t)) x Pr(z(t)|z(t - 1))

Pr(X:|Y;) = Pr(y(t)|Yi-1)

Pr(Xi-1|Yi-1) (2)

This result is satisfying in the sense that we need only know the
joint posterior distribution at the previous stage, t — 1, scaled by
a weighting function to sequentially propagate the posterior to the
next stage, that is,

NEW WEIGHT OLD
Pr(X:|Y;) = W(t,t — 1) x Pr(X;—1|Yi—1) (3)
where the weight is defined by

Pr(y(t)|x(t)) x Pr(z(t)]z(t — 1))
Pr(y(t)[Y;-1)
Even though this expression provides the full joint posterior so-

lution, it is not physically realizable unless the distributions are
known in closed form and the underlying multiple integrals or sums

W(t,t—1):=

n Kalman filtering theory, the X; are considered the states or hidden variables not
necessarily observable directly, while the Y; are observed or measured directly.



Table 1: Sequential Bayesian Processor for Filtering Posterior

Prediction

Pr(z(t)|Yi—1) = [ Pr(z(t)|z(t — 1)) x Pr(z(t — 1)|Yi—1)dz(t — 1)

Update/Posterior

Pr(w(t)|¥i) = Pr(y(t)[2(t)) x Pr(e(t)Yir) / Pr(y(®)]Yi-1)

Initial Conditions

7(0) P(0) Pr(z(0)[Yn)

can be analytically determined. In fact, a more useful solution is the
marginal posterior distribution [3] given by the update recursion® as

Likelihood Prior

Pr(y(t)|z(t)) x Pr(z(t)[Yi-1)
Pr(y(t)[Yi1)
FEvidence
where we can consider the update or filtering distribution as a
weighting of the prediction distribution as in the full joint case

above, that is,

Posterior

Pr(z(t)|Y) =

(4)

UPDATE WEIGHT PREDICTION
Pr(e(t)V) = Wt t — 1) x Pre(®)]ve 1) (5)
where the weight in this case is defined by

w

Pr(y(t)[Y;-1)

We summarize the sequential Bayesian processor in Table 1.

These two sequential relations form the theoretical foundation of
many of the sequential particle filter designs. Next we consider the
idea of Bayesian importance sampling.

We(t,t —1) =

2Note that this expression precisely satisfies Bayes’ rule as illustrated in the equation.



3 Monte Carlo Approach

In signal processing, we are interested in some statistical measure
of a random signal or parameter usually expressed in terms of its
moments. For example, suppose we have some signal function, say
f(X), with respect to some underlying probabilistic distribution,
Pr(X), then a typical measure to seek is its performance “on the
average” which is characterized by the expectation

Ex{f(X)} = [ F(X)Pr(X)dx (6)

Instead of attempting to use numerical integration techniques,
stochastic sampling techniques known as Monte Carlo (MC) inte-
gration have evolved as an alternative. The key idea embedded in
the MC approach is to represent the required distribution as a set of
random samples rather than a specific analytic function (e.g. Gaus-
sian). As the number of samples becomes large, they provide an
equivalent representation of the distribution enabling moments to
be estimated directly.

Monte Carlo integration draws samples from the required distri-
bution and then forms sample averages to approximate the sought
after distributions, that is, it maps integrals to discrete sums. Thus,
MC integration evaluates Eq. 6 by drawing samples, {X (i)} from
Pr(X) with “—"” defined as drawn from. Assuming perfect sam-
pling, this produces the estimated or empirical distribution given
by

R 1 X
Pr(X)~ => §(X —X(4))
N
which is a probability distribution of mass or weights, % and random

variable or location X (7). Substituting the empirical distribution
into the integral gives

Ex{f()) = [ FOPHX)AX ~ G FX0) =T ()

which follows directly from the sifting property of the delta function.
Here f is said to be a Monte Carlo estimate of Ex{f(X)}.

A generalization to the MC approach is known as importance
sampling which evolves from:



I = /Xg(at)d:v = /X (%) x q(x) dx  for /q(:v)datz 1 (8

Here ¢(x) is referred to as the sampling distribution or more appro-
priately the importance sampling distribution, since it samples the
target distribution, g(x), non-uniformly giving “more importance”
to some values of g(x) than others. We say that the support of q(z)
covers that of g(z), that is, the samples drawn from ¢(-) overlap the
same region (or more) corresponding to the samples of g(-). The
integral in Eq. 8 can be estimated by:

e Draw N-samples from

q(z) : X (i) — g(v) and §(z) ~ 5 >_d(x - X(0);

e Compute the sample mean,

n ()= (84 £

Consider the case where we would like to estimate the expectation
of the function of X given by f(X), then choosing an importance
distribution, ¢(x), that is similar to f(x) with covering support gives
the expectation estimator

B = [, £ x et = [ 16 (5] < atoris )

q(z)

If we draw samples, {X (i)}, ¢ = 0,1,---, N from the importance
distribution, ¢(z), and compute the sample mean, then we obtain
the importance sampling estimator

s (e 5 (5580

(10)
demonstrating the concept. Note we are again assuming perfect
(uniform) sampling with §(z) ~ + YN, §(z — X(i)).

The “art” in importance sampling is in choosing the importance
distribution, ¢(-), that approximates the target distribution, p(-), as




closely as possible. This is the principal factor effecting performance
of this approach, since variates must be drawn from ¢(z) that cover
the target distribution. Using the concepts of importance sampling,
we can approximate the posterior distribution with a function on
a finite discrete support. Since it is usually not possible to sam-
ple directly from the posterior, we use importance sampling coupled
with an easy to sample proposal distribution, say q(X;|Y;)—this is
the crucial choice and design step required in Bayesian importance
sampling methodology. Here X; = {x(0),---,z(t)} represents the
set of dynamic variables and Y; = {y(0),---,y(¢)}, the set of mea-
sured data as before. Therefore, starting with a function of the set
of variables, say g(X;), we would like to estimate its mean using the
importance concept, that is,

E{g(X)} = [ g(X)) x Pr(X.|Y;) dX, (11)

where Pr(X;|Y;) is the posterior distribution. Using the MC ap-
proach, we would like to sample from this posterior directly and
then use sample statistics to perform the estimation. Therefore we
insert the proposal importance distribution, ¢(X;|Y;) as before

0(0) = E(o(x0) = [ a5 [ sacuim axe )

Now applying Bayes’ rule to the posterior distribution, and defin-
ing an unnormalized weighting function as

L Pr(XiY)) | Pr(YiXp) x Pr(X,)

WO =X - a) 13)
and substituting gives
00 = [ | g st < axvy axe )

The evidence or normalizing distribution, Pr(Y;), is very difficult
to estimate; however, it can be eliminated in this expression by first
replacing it by the total probability and inserting the importance
distribution to give

B x g(X))
90 ==, W)

(15)
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that are just expectations with respect to the proposal importance
distribution.

Thus, drawing samples from the proposal X;(i) — X; ~ ¢(X;|Y;)
and using the MC approach (integrals to sums) leads to the desired
result. That is, from the “perfect” sampling distribution, we have
that

q(Xe|Yy) = 25 (Xi — Xi(4)) (16)

and therefore substituting, applylng the sifting property of the Dirac
delta function and defining the “normalized” weights as before by

o Wi(t) or o Pr(Y;| X:(7)) x Pr(Xy(7))
W= g o ) (X))
(17)
we obtain the final estimate
ZW x g(Xi(i)) (18)

This importance estlmator is biased being the ratio of two sample
estimators, but it can be shown that it asymptotically converges to
the true statistic and the central limit theorem holds ([4],[5],[6]).
Thus as the number of samples increase (N — 00), a reasonable
estimate of the posterior is

Br(X,|Y7) zw X (X, — X(3)) (19)

which is the goal of Bayes1an estimation. This estimate provides a
“batch” solution, but we must develop a sequential estimate from a
more pragmatic perspective.

The importance distribution can be modified to enable a se-
quential estimation of the desired posterior distribution, that is,
we estimate the posterior, Pr(X;_;|Y;—1) using importance weights,
W(t — 1). As a new sample becomes available, we estimate the
new weights, W(t) leading to an updated estimate of the posterior,
Pr(X,|Y;). This means that in order to obtain the new set of sam-
ples, X;(i) ~ q(X;|Y;) sequentially, we must use the previous set of
samples, X;_1(i) ~ q(X;—1]Y;—1). Thus, with this in mind, the im-



portance distribution, ¢(X;|Y;) must admit a marginal distribution,
q(X¢—1|Y:—1) implying a Bayesian factorization

q(XieYy) = q(Xia Vi) X q(2(8)[ Xi1, Vi) (20)

This type of importance distribution leads to the desired sequen-
tial solution [7].

Recall the Bayesian solution to the batch posterior estimation
problem (as before),

Pr(y(t)]z(t)) x Pr(z(t)|z(t - 1))
Pr(y(t)[Y;-1)

and recognizing the denominator as just the evidence or normalizing
distribution and not a function of X;, we have

Pr(X,|Y7) o Pr(y(t)]2(t)) x Pr(a(t)]a(t — 1)) x Pr(X;a|Yiy) (21)

Pr(X,|Y;) = x Pr(X,_1|Yi_1)

Substituting this expression for the posterior in the weight relation,
we have

CPHMIX) o Prafe(t - 1) Pr(Xe Vi)
W) =Sz~ POl < Ry aKea Y

Previous Weight
(22)
which can be written as

Pr(y(t)[=(t)) x Pr(z(t)|z(t — 1))
q(a(t)|Xi-1,Y?)
giving us the desired relationship—a sequential updating of the

weight at each time-step. These results then enable us to formu-
late a generic Bayesian sequential importance sampling algorithm:

W(t) = W(t —1) x

(23)

1. Choose samples from the proposed importance distribution:
zi(t) ~ q(@(t)[ Xi—1, V)5
2. Determine the required conditional distributions:

Pr(z;(@)|z(t = 1)), Pr(y(t)|zi?));



3. Calculate the unnormalized weights: W;(t) using Eq. 23 with
w(t) = ai(t);

4. Normalize the weights: W;(t) of Eq. 17; and

5. Estimate the posterior distribution:

Pr(X,|Y;) = ZW t) — xi(t))

Once the posterior is estimated, then desired statistics evolve di-
rectly. Next we consider using a model-based approach incorporat-
ing state-space models [1].

4 Bayesian Approach to the State-Space

Bayesian estimation relative to the state-space models is based on
extracting the unobserved or hidden dynamic (state) variables from
noisy measurement data. The Markovian state vector with initial
distribution, Pr(z(0)), propagates temporally throughout the state-
space according to the probabilistic transition distribution, Pr(x(t)|z(t—
1)), while the conditionally independent measurements evolve from
the likelihood distribution, Pr(y(t)|z(t)). We see that the dynamic
state variable at time t is obtained through the transition proba-
bility based on the previous state (Markovian property), z(t — 1),
and the knowledge of the underlying conditional probability. Once
propagated to time ¢, the dynamic state variable is used to update
or correct based on the likelihood probability and the new mea-
surement, y(t). This evolutionary process is illustrated in Fig. 1.
Note that it is the knowledge of these conditional distributions that
enable the Bayesian processing.

The usual model-based constructs of the dynamic state variables
indicate that there is an equivalence between the probabilistic dis-
tributions and the underlying state /measurement transition models.
The functional discrete state representation of the previous section
given by

2(t) = A(z(t—1),u(t— 1), w(t — 1))
C (z(t),u(t),v(t)) (24)

10



where w and v are the respective process and measurement noise
sources with u a known input. Here A (-) is the nonlinear (or lin-
ear) dynamic state transition function and C () the corresponding
measurement function. Both conditional probabilistic distributions
embedded within the Bayesian framework are completely specified by
these functions and the underlying noise distributions: Pr(w(t—1))
and Pr(v(t)). That is, we have the equivalence?

Azt —1),u(t — 1), w(

Thus, the state-space model along with the noise statistics and prior
distributions define the required Bayesian representation or proba-
bilistic propagation model defining the evolution of the states and
measurements through the transition probabilities. This is a subtle
point that must be emphasized and illustrated in the diagram of Fig.
1. Here the dynamic state variables propagate throughout the state-
space specified by the transition probability ( A (z(t)|x(t — 1)) ) us-
ing the embedded process model. That is, the “unobserved” state at
time t — 1 depends the transition probability distribution to prop-
agate to the state at time t. Once evolved, the state combines
under the corresponding measurement at time ¢ through the con-
ditional likelihood distribution ( C (y(¢)|z(t)) ) using the embedded
measurement model to obtain the required likelihood distribution.
These events continue to evolve throughout with the states propa-
gating through the state transition probability using process model
and the measurements generated by the states and likelihood us-
ing the measurement model. From the Bayesian perspective, the
broad initial prior is scaled by the evidence and “narrowed” by the
likelihood to estimate the posterior.

With this in mind we can now return to the original Bayesian
estimation problem, define it and show (at least conceptually) the
solution. Using the state-space and measurement representation,
the basic dynamic state estimation (signal enhancement) problem
can now be stated in the Bayesian framework as:

3We use this notation to emphasize the influence of both process (A) and measurement
(C) representation on the conditional distributions.

11

t—1) = Pr(e(t)|e(t—1) o Aot - 1))
C(z(t),u(t),v(t)) = Pry@)z(t) & Cy@)z@))

(25)



(-1 ) J(t+1)

—————— = F—1 e e e t et CEE T S s | e
Cye-Dlx¢-1) C{r)x0) C{yE+D|x(t+1)
oy A(x()]x(t-1)) 0 Azt +D)]=()) 0t >

Figure 1: Bayesian State-Space Probabilistic Evolution.

GIVEN a set of noisy uncertain measurements, {y(¢)}, and known
inputs, {u(t)};t =0,---, N along with the corresponding prior dis-
tributions for the initial state and process and measurement noise
sources: Pr(z(0)), Pr(w(t — 1)), Pr(v(t)) as well as the conditional
transition and likelihood probability distributions: Pr (z(t)|z(t — 1)),
Pr (y(t)|x(t)) characterized by the state and measurement models:
A(x(t)|z(t —1)), C(y(t)|=(t)), FIND the “best” (filtered) estimate
of the state, x(t), say Z(t|t) based on all of the data up to and in-
cluding ¢, Y;, that is, find the best estimate of the filtering posterior,
Pr (z(t)|Y;), and its associated statistics.

Analytically, to generate the model-based version of the sequen-
tial Bayesian processor, we replace the transition and likelihood dis-
tributions with the conditionals of Eq. 25. The solution to the signal
enhancement or equivalently state estimation problem is given by
the filtering distribution, Pr (x(¢)|Y;) which was solved previously in
Sec. 2 (see Table 1). We start with the prediction recursion charac-
terized by the Chapman-Kolmogorov equation replacing transition
probability with the implied model-based conditional, that is,

12



Embedded Process Model Prior
Pr(z(t)|Yi—1) = / A(z(t)|x(t — 1)) x Pr(z(t —1)|Yi—1) de(t—1)
(26)
Next we incorporate the model-based likelihood into the posterior

equation with the understanding that the process model has been
incorporated into the prediction

Embedded Measurement Model Prediction

—~— ——
Pr(x(t)|V;) = Cly(t)|x(t)) x Pr(z(t)[Yi1) /Pr(y(t)|Yim1)
(27)
Thus, we see from the Bayesian perspective that the sequential
Bayesian processor employing the state-space representation of Eq.
24 is straightforward. Next let us investigate a more detailed de-
velopment of the processor resulting in a closed-form solution—the
linear Kalman filter.

5 Bayesian Particle Filters

Particle filtering (PF) is a sequential Monte Carlo method employ-
ing the recursive estimation of relevant probability distributions
using the concepts of “importance sampling” and the approxima-
tions of distributions with discrete random measures ([7]-[11]). The
key idea is to represent the required posterior distribution by a
set of N,-random samples, the particles, with associated weights,
{z;(t),Wi(t)};i=1,---, N, and compute the required Monte Carlo
estimates. Of course, as the number of samples become very large
the MC representation becomes an equivalent characterization of
the analytical description of the posterior distribution.

Thus, particle filtering is a technique to implement recursive
Bayesian estimators by MC simulation. It is an alternative to ap-
proximate Kalman filtering for nonlinear problems ([1],[2],[7]). In
PF' continuous distributions are approximated by “discrete” ran-
dom measures composed of these weighted particles or point masses
where the particles are actually samples of the unknown or hidden
states from the state-space and the weights are the associated “prob-
ability masses” estimated using the Bayesian recursions as shown in

13



Fig. 2. From the figure we see that associated with each particle,
x;(t) is a corresponding weight or (probability) mass, W;(t). There-
fore knowledge of this random measure, {z;(t), W;(t)} characterizes
the empirical posterior distribution—an estimate of the filtering pos-
terior, that is,

()Y2) ~ ZW t) —i(t))

at a particular instant of tlme t. Importance sampling plays a cru-
cial role in state-space particle algorithm development. PF does not
involve linearizations around current estimates, but rather approxi-
mations of the desired distributions by these discrete measures. In
comparison, the Kalman filter, recursively estimates the conditional
mean and covariance that can be used to characterize the filtering
posterior, Pr(x(¢)|Y;) under gaussian assumptions [1].

In summary, a particle filters is a sequential MC based “point
mass” representation of probability distributions. They only require
a state-space representation of the underlying process to provide a
set of particles that evolve at each time step leading to an instanta-
neous approximation of the target posterior distribution of the state
at time t given all of the data up to that time. Fig. 2 illustrates the
evolution of the posterior at a particular time step. Here we see the
estimated posterior based on 21-particles (non-uniformly spaced)
and we select the 5-th particle and weight to illustrate the instan-
taneous approximation at time t for x; vs Pr(z(t)|Y;). Statistics
are calculated across the ensemble created over time to provide the
inference estimates of the states. For example, the minimum mean-
squared error (MMSE) estimate is easily determined by averaging
over x;(t), since

Fmmse(t) = / 2(8)Pr(z(t)| V) da ~ / 2(8)Pr(z(t)| V) de

1 X 1 M
- iZII(t)Wi(t)(S(l’(t) — z(t)) = , ;Wi(t)l'i(t)

while the maximum a posterior (MAP) estimate is simply deter-
mined by finding the sample corresponding to the maximum weight

14
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Figure 2: Particle filter representation of posterior probability distribution in
terms of weights (probabilities) and particles (samples).

of x;(t) across the ensemble at each time step, that is,
inap() = max {Pr(z()]Y))} (28)

The sequential importance sampling solution to the recursive
Bayesian state estimation problem was given previously starting
with the recursive form for the importance distribution as

A(XlY2) = q(XeaYior) X a(2(t)| Xo1, Vi)
and evolving to the recursive expression for the importance weights
as
W(t) = Pr(X:|Y;) _ Pr(Y;| Xy) x Pr(Xy)
q(X:|Y7) q(Xi-1]Yio1) x q(z(t)| X1, 7)

Likelihood Transition
Pr(y(t)|=(t)) x Pr(z(t)|z(t — 1))
q(x(t)| Xi-1, Y1)

W(t) = W(t —1) x (29)

15



The state-space particle filter (SSPF) evolving from this sequen-
tial importance sampling construct follows directly after sampling
from the importance distribution, that is,

zi(t) — q(z@)]x(t —1),y(t))
(t

T Cl®la) x Al — 1)
Wilt) = Wit =) = e = 1. 9(0)
PR A0

WilE) = S Wilt) )

and the filtering posterior is estimated by

(t)[Y) ZW w(t) — i(t)) (31)
assuming that

q (@(t)|Xi-1,Y2) — q (2(t)]x(t = 1),y(t)) (32)

then the importance distribution is only dependent on [z(t—1), y(t)]
which is common when performing filtering, Pr(z(¢)|Y;), at each
instant of time.

This completes the theoretical motivation of the state-space-particle
filters. Next we consider a pragmatic approach for implementation.

6 Bootstrap Particle Filter

In the previous section, we developed the generic SSPF from the
simulation-based sampling perspective. The basic design tool when
developing these algorithms is the choice of the importance sam-
pling distribution, ¢(-). One of the most popular realizations of this
approach was developed by using the transition prior as the impor-
tance proposal [3]. This prior is defined in terms of the state-space
representation by A(z(t)|z(t —1)) — A(z(t —1),u(t — 1), w(t — 1))
which is dependent on the known excitation and process noise statis-
tics. It is given by

Gprior (2 ()|2(t = 1), Y;) — Pr(z(t)[z(t - 1))

Substituting this choice into the expression for the weights gives

16



Pr(y(t)|z(t)) x Pr(z(t)|z(t — 1))
Qprior (T (t)]2i(t — 1), Y})
= Wit —1) x Pr(y(t)]z:(t))

since the priors cancel. Note two properties of this choice of impor-
tance distribution. First, the weight does not use the most recent ob-
servation, y(t) and second this choice is easily implemented and up-
dated by simply evaluating the measurement likelihood, C(y(t)|x;(t)); 1 =
1,---, N, for the sampled particle set. These weights require the
particles to be propagated to time t before the weights can be cal-
culated.

This choice can lead to problems, since the transition prior is
not conditioned on the measurement data, especially the most re-
cent. Failing to incorporate the latest available information from
the most recent measurement to propose new values for the states
leads to only a few particles have significant weights when their
likelihood is calculated. The transitional prior is a much broader
distribution than the likelihood indicating that only a few particles
will be assigned a large weight. Thus, the algorithm will degenerate
rapidly. Thus, the SSPF algorithm takes the same generic form as
before with the importance weights much simpler to evaluate with
this approach. It has been called the bootstrap PF, the condensation
PF, or the survival of the fittest algorithm [3].

One of the major problems with the importance sampling algo-
rithms is the depletion of the particles, that is, they tend to increase
in variance at each iteration. The degeneracy of the particle weights
creates a problem that must be resolved before these particle algo-
rithms can be of any pragmatic use in applications. The problem
occurs because the variance of the importance weights can only in-
crease in time [3] thereby making it impossible to avoid this weight
degradation. Degeneracy implies that a large computational effort
is devoted to updating particles whose contribution to the posterior
is negligible. Thus, there is a need to somehow resolve this problem
to make the simulation-based techniques viable. This requirement
leads to the idea of “resampling” the particles.

The main objective in simulation-based sampling techniques is
to generate i.i.d. samples from the targeted posterior distribution in

17



order to perform statistical inferences extracting the desired infor-
mation. Thus, the importance weights are quite critical since they
contain probabilistic information about each specific particle. In
fact, they provide us with information about “how probable a sam-
ple has been drawn from the target posterior” [12], [13]. Therefore,
the weights can be considered acceptance probabilities enabling us to
generate independent (approximately) samples from the posterior,
Pr(z(t)|Y;). The empirical distribution, Pr(z(t)|Y;) is defined over
a set of finite (N,) random measures, {z;(t),Wi(t)};i = 1,---, N,
approximating the posterior, that is,

)Y) Z Wit — x(t)) (33)

Resampling, therefore, can be thought of as a realization of en-
hanced particles, Z(t), extracted from the original samples, x;(t)
based on their “acceptance probability”, W;(t) at time ¢, that is,
statistically we have

Pr(ig(t) = zi(t)) = Wi(t)  fori=1,---,N, (34)

or we write it symbolically as

Tr(t) = x4(t)

with the set of new particles, {z(t)}, replacing the old set, {x;(t)}.

The fundamental concept in resampling theory is to preserve par-
ticles with large weights (large probabilities) while discarding those
with small weights. Two steps must occur to resample effectively:
(1) a decision, on a weight-by-weight basis, must be made to select
the appropriate weights and reject the inappropriate; and (2) resam-
pling must be performed to minimize the degeneracy. The overall
strategy when coupled with importance sampling is termed sequen-
tial importance resampling (SIR) [3]. We illustrate the evolution
of the particles through a variety of prediction-update time-steps
in Fig. 3 where we see evolution of each set of particles through
prediction, resampling and updating.

We summarize the bootstrap particle filter algorithm in Table 4.
This completes the algorithm, next we apply it to a standard prob-
lem.
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Figure 3: Evolution of particle filter weights and particles using the sequen-
tial state-space SIR algorithm: resampling, propagation (state-space transition
model), update (state-space measurement likelihood), resampling ... .

Table 2: BOOTSTRAP SIR State-Space Particle Filtering Algorithm

INITTALIZE:
r .
x;(0) — Pr(z(0)) W;(0) = N = 1L---,N, [sample]
P

IMPORTANCE SAMPLING:
[state transition]

i(t) ~ A(x(t)|zi(t — 1)) ; wi ~ Pr(wi(t))
Weight Update
Wilt) = Wit = 1) x € (y(D)l(t)) weights]

Weight normalization
Wit

W@(t) — %

> Wi(t)

RESAMPLING: (2(t) = ;(t))
DISTRIBUTION:
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(1)|Yz) Z Wi(t —T4(t)) [posterior distribution]

STATE ESTIMATION:

z(t|t) = E{z(t)|Y:} =~ —p Zzl [conditional mean]
Xarap(t) = max Pr(z(t)]Y;) [MAP]

7 Example: Nonlinear Non-gaussian Prediction

We consider a well-known problem that has become a benchmark
for many of the PF algorithms. It is highly nonlinear, non-gaussian
and nonstationary and evolves from studies of population growth
[3]. The state transition and corresponding measurement model are
given by

o) = %x(t—1)+12fz(2t—(t__1)1)+8cos(l.2(t—l))+w(t—1)
v = T

where At = 1.0, w ~ N (0,10) and v ~ N(0,1). The initial state is
gaussian distributed with Z(0) ~ A(0.1,5).
In terms of the state-space representation, we have

aw(t—1)] = %x(t—10)+12+52(§—(t__1)1))
blu(t—1)] = 8cos(1.2(t—1))
cletr)) = Z0

In the Bayesian framework, we would like to estimate the instan-
taneous posterior filtering distribution,

(6)|Y2) ~ ZVW — (1)) (35)
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where the unnormalized importance weight is given by

Cly(t)]x(t)) x A(z(t)|z(t —1))
Wi(t) = Wit —1 36
(t) (t—1) x REOORY) (36)
The weight recursion for the bootstrap case is W;(t) = W;(t —

1)xC (y(t)|z(t)). Therefore, for our problem, the Bayesian processor
has its state transition probability given by

Pr(z(t)|z(t — 1)) — A(@(t)|z(t — 1)) ~ N (2(t) : alz(t — 1)], Ruw)
(37)

Thus, the SIR algorithm becomes:

e Draw samples (particles) from the state transition distribution:

zi(t) = N (x(t) : a[z(t — 1)], Ruw)
w;(t) — Pr(w(t)) ~ N(0, Ryw)

xi(t) = %l’l(t —1)+ ﬁﬁg—m +8cos (1.2(t — 1)) +w;(t—1)
e Estimate the likelihood, C (y(t)|z(t)) — N (y(t) : c[z(t)], Ruw(t))
clai(t)] = 21

e Update and normalize the weight: W;(t) = W;(t)/ Shr, Wi(t)
e Resample: ;(t) = x;(t)

e Estimate the instantaneous posterior:

(t)[Yz) ZWé Ti(t))

e Estimate the corresponding statistics:

Xmap(t) = arg maxPr(z(t ()|y;)

Xmmse(t) = E{x(t)|Y:} ZIZ (t)[Y2)

A~

X

median () median (Pr(:v( )|Yt)))

We show the simulated data in Fig. 4. In a we see the hidden
state and b the noisy measurement. The estimate instantaneous
posterior distribution surface for the state is shown in Fig. 5a while
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Figure 4: Population growth problem:(a) Simulated state with mean. (b) Sim-
ulated measurement with mean. (¢) Ensemble of state estimates: median, EKF

MMSE MAP(d) Ensemble of measurement estimates: median, EKF' MMSE
MAP.

slices at selected instants of time are shown in b. Here we see that
the posterior is clearly not unimodal and in fact we can see its
evolution in time as suggested by Fig. 2 previously. The final state
and measurement estimates are shown in Fig. 4b demonstrating
the effectiveness of the PF bootstrap processor for this problem.
Various ensemble estimates are shown (e.g. median, MMSE MAP).
It is clear that the EKF gives a poor MMSE estimate, since the
posterior is not gaussian (unimodal).

8 Summary

In this paper we have provided an overview of nonlinear statisti-
cal signal processing based on the Bayesian paradigm. We showed
that the next generation processors are well-founded on Monte Carlo
simulation-based sampling techniques. We reviewed the develop-
ment of the sequential Bayesian processor using the state-space mod-
els. The popular bootstrap algorithm was outlined and applied to
a standard problem used within the community to test the perfor-
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SAUPDATED Pasterior Distribution (Pl State No. 1

Figure 5: Population growth problem:(a) Instantaneous posterior surface. (b)
Time slices of the posterior (cross-section) at selected time-steps.

mance of a variety of PF techniques.
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