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ABSTRACT. Certain signal reconstruction problems can be understood in terms of
frames and redundant representations. The redundancy is useful because it leads to
robust signal representations, that is, representations in which partial loss of data can
be tolerated without misbehavior or adverse effects. This chapter begins by present-
ing a few engineering problems in which robust data representations play a central
role. It turns out that these problems, which occur in signal processing, spectrum
analysis, information theory, and fault-tolerant computing, are closely related or even
equivalent. However, perhaps surprisingly, the connections between them have gone
nearly unnoticed so far. Frames, and in particular discrete finite frames, provide one
of the ways of understanding certain of these problems, including the important miss-
ing data problem. Some of the methods that can be used to recover from missing data
errors are examined, emphasizing finite-dimensional theory because of its simplicity
and practical usefulness, and interpreting the results in terms of discrete finite frames.
The connection between the frame algorithm and a few other iterative reconstruction
methods, such as POCS and the Papoulis-Gerchberg iteration, is detailed.

1. Introduction

Redundant data representations are useful in a variety of contexts. Their theoretical interest
can hardly be denied — it is enough to consider the concept of “frame” and its role in mathe-
matics and engineering. On the other hand, redundancy usually leads to robustness which, in
turn, suggests several applications. Loosely speaking, a signal representation is robust when
partial loss of data does not lead to misbehavior or severe adverse effects.

This chapter discusses frames and their usefulness in connection with certain problems
that arise in interpolation, spectrum analysis, error-control coding, and fault-tolerant comput-
ing. We believe that the relations between these problems have gone nearly unnoticed so far.
Some of the problems are shown to be equivalent in the following sense: if one of them can
be solved using a certain algorithm, so can the other, using essentially the same algorithm.
The specific problems that will be considered are: (i) the band-limited missing data prob-
lem; (ii) a nonlinear interpolation problem; (iii) the problem of estimating a signal that is the
superposition of a finite number of harmonics; (iv) an error-control coding problem, formu-
lated in the real field; and (v) certain techniques that occur in algorithm-based fault tolerant
computing.

The advantages of studying the relations among these problems are clear. The techniques
commonly used in one field can be imported to the others, the duplication of research efforts is
prevented, the overall degree of understanding of the problems increases, and new algorithms
emerge as a result.

The research that lead to this work was supported by the JNICT/FCT.
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After discussing the above mentioned problems we will introduce the concept of frame.
Frames were introduced by Duffin and Schaeffer [6] in 1952, in reference to nonharmonic
Fourier series. The importance of the ideas underlying that paper was recognized by the
scientific community, especially after the early 80’s, when frames started what Daubechies
called their “second career” [4].

Frames became one of the fundamental concepts in time-frequency and time-scale anal-
ysis and wavelet series. They are the central topic of many papers, and a variety of books
carry discussions of frame theory. A clear introduction can be found, for example, in [48]
or [3]. The recent issue dfhe Journal of Fourier Analysis and Applicatiodsdicated to
Richard J. Duffin offers many further examples of the mathematical importance of frames.
Their significance in the context of signal analysis and engineering applications is also widely
recognized.

Our motivation for introducing frames is the following: discrete finite frames provide one
of the ways of approaching the missing data problem mentioned above. And the solution to
this problem can be put to use when studying the other problems as well.

We will attempt to show how frames can be used to deal with missing data, emphasiz-
ing finite-dimensional theory because of its simplicity and practical usefulness. Robust signal
representations are important for signal analysis and processing applications, and frames pro-
vide redundant representations. Redundancy is a necessary requirement for robustness, in the
sense of information theory: if a data stream has no redundancy, error detection (not to men-
tion error correction!) is impossible. Adding redundant data makes error detection possible
(consider adding parity bits to a bit stream). Adding even more redundancy may allow for
both error detection and correction.

This is often accomplished by error control coding in Galois (finite) fields. We will not
follow this path: instead, we will work in the complex or real fields. This has advantages
and disadvantages. One one hand, the block length restrictions that arise when dealing with
finite fields can be circumvented (for example, the discrete Fourier transform and many other
unitary transforms can be defined®Y, that is, for signals ofV samples, for anyw > 1).

On the other hand, arithmetic in the real and complex fields is prone to round-off error: exact
real arithmetic is technically impossible in practice.

Nevertheless, the approach used will hopefully bridge the gap between frames, signal re-
construction, and the problems mentioned initially. To emphasize the multiple connections
between these topics we will consider a few of the iterative methods available for interpolating
and extrapolating signals, which were used for signal reconstruction purposes before frames
became popular alternatives: the Papoulis-Gerchberg iteration, alternating projections, pro-
jections onto convex sets (POCS), and more.

We will clarify the relation between the frame algorithm and these other methods, and
show how the frame bounds relate to their numerical performance or convergence rate. At
the end, we will hopefully have a better grasp of the mathematical foundations of finite-
dimensional signal reconstruction and a few other seemingly unrelated problems.

2. Notation and preliminaries

2.1. The discrete Fourier transform

The Fourier matrixt' is the N x N matrix with elements
1 2 2w
F,=——e %W,
J \/N
The symboli denotes the imaginary unit, not to be confused witbr j, which denote
integers. The Fourier matrix is unitary, that is, its inverse is simply the Hermitian transpose:

FUF =FF" =1T.
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The discrete Fourier transform (DFT) ofis denoted byi, and is defined by
A
T = Fu.

Computing the discrete Fourier transfoim= Fz seems to requir®(N?) arithmetic op-
erations, as any general matrix-vector productih. However,F is a very special matrix
and the computation of the DFT (equivalently, of the matrix produet F'x) can be sped
up considerably. The number of necessary arithmetic operations (flops) can often be made as
low asO(N log, N), using the fast Fourier transform (FFT).

We say “often” because the computational load depends on the structure of the number
N. WhenN is a highly composite number, such as a power of two, the computations are
easier. For details and applications of the FFT, see, for example, [2,42].

2.2. Circulants

A N x N matrixC'is circulant if it has the following structure:

Co C1 o CN—1
CN-1 Co o CN—2
C CN—2 CN-1 ' CN-3
| en—3 ¢cN—2 ++ CN-4
[ €1 C2 o Co J

Each row ofC' can be obtained from the preceding row by shifting its elements one position
to the right and “wrapping around”. This is called a circular shift, and the matrix-vector
multiplicationC'z is called circular convolution.

All circulants commute, a consequence of the decomposition

C =FUAF

whereA is diagonal. For our purposes, this is the most important fact concerning circulants.
It asserts that the Fourier matrix diagonalizes all circulants.

The eigenvalues of a circulant can be found rather easily, oftén(ix log, V) flops
when using the FFT algorithm, because they are determined hy #lements of the DFT
of one of the rows or columns of the circulant. The FFT is also useful for computing circular
convolutions, because

Cox=FUANFz=F"Az.

The DFT vectoti: can often be computed (N log, N) flops, as well as the multiplication
by F/ (the inversion of the DFT). Multiplication by the diagonal mattxs anO(N)-flop
task, and the conclusion is that circular convolutioi€ih can be evaluated i@ (N log, N)
flops.

Circulants are a remarkably simple but interesting class of matrices. Many matrix prob-
lems, when formulated in terms of circulants, admit closed form solutions. For details con-
cerning circulant matrices see [5].

2.3. A class of circulant matrices

We will need to consider the expansion of signalef N samples, that is, vectors "
or CV, in terms of certain non-orthogonal vectors. To introduce these vectors, consider the
N x N circulant matrixB given by

B = FUAF,

whereA is anN x N diagonal matrix. It is assumed that; = 1 or A;; = 0, thatis,A is a
zero-one diagonal matrix (and consequenth= A). To avoid trivialities, it is preferable to
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exclude the possibility of having = 0, the zero matrix, oA = I, the identity matrix. The
matrix B is Hermitian, and satisfies

B*=B
because\? = A. Consider the set of vectors that satisfy the equation

r = Bux.

It is easily seen that this set is not empty and that it forms a subsp&?é. of

The linear operatar — Bz can be regarded as a linear system or filter. Its action upon
a signalz can be easily understood in terms /ofand the Fourier transform of . The
samplest; such that\;, = 1 are preserved by the system. The remaining samiplefor
which A;; = 0, are set to zero.

By definition, the pass-band @ is the setP of integers for which\;; = 1. The signals
x that satisfyr = Bz are those whose Fourier transform is supported in the pass-bdhnd of
We will refer to them as band-limited signals.

The decompositios = F AF means that

N-1

By = Y FiAwF

k=0
= ) FiFy,

keP

whereP is the pass-band a8 (A, = 0 for any integel) < k& < N that does not belong to
P). This shows thaB can be written a$3 = E* E, where the columns of the matrix are
the columngr; of the Fourier matrix with € P.

The equation: = Bz can also be written in terms of the colum{B; } (<, x of B,

N—-1
=0
B is idempotent, and®? = B implies
(Bi, Bj) = Byj,
and ifz satisfiest = Bz then
2.4. An example: low-pass signals

Let the main diagonal of be given by

1,1,...,1,0,...,0,1,...,1].
[ ——— H/—j

M times M times
SinceB = FHYAF, this immediately translates into
M .
B = Z o iR (i=i)k
k=—M

sin[7(2M +1)(i — j)/N]
N sin[n(i — j)/N]
In terms of the samples af © = Bx becomes

N, Sinfr@M +1)(i - 5)/N]
= N sinfn(i — j)/N]

j=0
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In this case, the signals such that= Bz are called low-pass signals aitlis a low-pass
filter matrix. Note the similarity between the previous equation and

“+00

ft) = ()

sinw(t — )

m(t — x) de

which is satisfied by any € L,(R) if and only if its Fourier transform vanishes almost
everywhere outside-w, w]. A signal belonging td.,(R) is band-limited if its Fourier trans-

form vanishes outside a compact set. When the support is an interval of thé-farn]

the signal is called low-pass. Band-pass signals are characterized by a Fourier transform that
vanishes outsidg-b, —a| U [a, b].

3. Robust data representations: some related problems

The missing data problem is the signal reconstruction problem around which this chapter
turns. To relate it to the interpolation, extrapolation or prediction problems it is only neces-

sary to consider specific distributions of the missing data (in the extrapolation problem the
known data are contiguous, in the prediction problem the past of the signal is known). These
problems are widely known in signal processing and in other fields (consider superresolu-
tion in optics, for example). The most common constraint imposed upon the signal is that of
band-limitedness.

PROBLEM 1 (missing data).To determine a subset of the samples of a band-limited sig-
nal.

Note that we are referring to finite-dimensional signals, and therefore assertions such as
“x is band-limited” mean “there exists a low-pass circulant maligelonging to the class
mentioned in section 2.3 and such that Bz”. This will be tacitly assumed from now on.

One of the methods for solving this problem is the Papoulis-Gerchberg algorithm, in
which the known time and frequency domain constraints are applied iteratively. hesthe
set of known samples, and I&x be the diagonal matrix

a |1, ifi=jandi e J,
() Dij = { 0, otherwise

The initialization step of the algorithm sets the unknown samples to some initial value. This
yields the first approximation®). The first half of thenth step of the algorithm consists in
filtering the result of the previous step, that is,

(2) y = Bz,

This imposes the frequency-domain constraints (the rggalband-limited). But this filter-
ing changes the values of the known samples. Thergfoes be improved simply by setting
the sampleg;, i € J, back to their known values. It can be readily verified that, given an
arbitrarya, b € CV, the operato” defined by

3) Pa = (I — D)a+ Db

can be used to enforce these time-domain constraints. It is enough to nat2dhaandb;
will agree for alli € J, a fact that follows at once from the definition bfin (1). Applying
this principle toy leads to

(4) 2™ = (I — D)y + Dz,

This sets the sampleg, i € .J, to their initial and correct values, completing the second half
of stepn. The two operations (2) and (4) can readily be combined in one equation,

™ = (I — D)Bz™™Y 4 Dz,
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which describes theth step of the algorithm. The process can be repeated until a satisfactory
result is found.

For more concerning the Papoulis-Gerchberg iteration and similar methods, see, for ex-
ample, [8, 22, 25, 26]. These methods and several others can be applied only if the positions
of the unknown samples are known. In practice, this is not always the case, and the following
problem arises.

PROBLEM 2. To simultaneously determine the number, positions and correct values of
the incorrect samples of a band-limited signal corrupted by impulsive noise.

This is a nonlinear problem. It can be approached in two steps: in the first step the number
and positions of the incorrect samples are estimated. As soon as the positions of the incorrect
samples have been estimated, the problem reduces to the missing data problem.

How can the corrupted samples be detected? One solution is as follows. Let

U= {7:0, il, e in—l}
denote the positions of theincorrect samples of a band-limited signat R". Lety denote
the observed signal, which coincides witlexcept for the samples whose indices belong to
U, and lete = x — y be the error signal. It is convenient to denote ifile sample ok by
e(k). Observe that(k) = 0 for all £ ¢ U. In practice, the cardinal df is usually much
smaller thanV, that is,e is sparse. Consider the polynomial

P(z) = Z hiz',
=0
defined byh,, = 1 and
5) P (i) =0,
form=0,1,... ,n— 1. Let
A= {j[)ajlaj?a e }
be a set of distinct integers. Multiplying (5) bf(im)ei%”mﬂ and summing leads to
n n—1
> e 3 el 0 =0,
k=0 m=0
which is equivalent to
> hié(k - jo) =0,
k=0
whereé = Fe is the DFT ofe. Using the fact thak,, = 1, one obtains

n—1
> hge(k —j) = —é(n— jp),
k=0

and proper choice of thg leads to a set of linear equatioiid = b for the coefficients,
of the polynomialP. The zeros of the polynomial, and consequently the position and the
number of errors, can be easily determined using the FFT algorithm. For details, see [14,44].
It is time to consider an apparently distinct problem: fault tolerant computing. Consider
a parallel computer, perhaps composed of many individual processing units, each having a
certain probability of failure. It is of course desirable that a failure in one of the processing
units does not bring the whole system to a halt or crash. Instead, one would like to be able
to continue the processing using only the operating units, and perhaps shutting down those
that have failed. To do this it is clearly necessary to detect the fault, and then, if possible,
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to correct the data. One of the approaches to fault detection is algorithm-based, that is, the
faults are detected by algorithms, or software, often using the known properties of the data
being processed.

For example, denote hy a vector inR", with NV large. Assume that the DFT afis
being computed, possibly with the help of several processing units, apdoethe result
of the computation. If; is indeed the DFT of;, then||z|| = ||y||, a condition that is easy
to check. Similar norm checks can be made for example after completing each stage of the
fast Fourier transform algorithm. They of course depend on the type of computation being
performed, and cannot be applied without changes, say, when inverting a matrix.

However, there are also general methods for checking the accuracy of a result that are to
a large extent independent of the type of data manipulation being carried out. Checksums
provide the most obvious example.

Work along these lines has been carried out by several authors [1, 20, 28, 29]. The check-
sums can be computed modulo an integer (a parity bit is a checksum modulo two). In the
real field, the checksums can be replaced by the average value of the data. Weighted check-
sums have also been used to extend the error-correcting capabilities. The weighted checksum
problem is similar to the following general problem.

PROBLEM 3. Given a possibly corrupted subset of data samples, and a subset of the
samples of a discrete orthonormal transform of the data (such as the DFT), determine the
data.

Note that the first sample of the DFT of a data veatar RY
N—-1
Ii’o == Z Tk
k=0
is proportional to the average of the data (the checksum). Any other DFT samples that might
also be known constitute weighted checksums, that may help in determining the data after
the occurrence of errors. Clearly, transforms other than the DFT might also be used for this
purpose.
The next problem is a widely known spectrum analysis problem.

PROBLEM 4. Given a subset of the samples of a signal, which is known to consist of a
linear combination of harmonics of unknown frequencies and amplitudes,

r
x(t) = Z ay e 2t
k=1

determine the signal.

This problem is very well-studied, and many methods (parametric and nonparametric)
have been proposed to solve it. A comprehensive review of the spectrum analysis techniques
up to 1981 can be found in [23].

We mention the method of Papoulis and Chamzas [32], for example, which is a modified
Papoulis-Gerchberg iteration in which the filtering step is replaced by a non-linear operation:
Fourier transforming, thresholding the spectrum, and inverse Fourier transforming.

The last problem that we consider is the following.

PROBLEM 5. The error-control problem in the real field: devise a coding procedure ca-
pable of locating and correcting up to a certain number of errors in a finite-length block of
real numbers.

One of the techniques that can be used is as follows. An initial blodk ddta words
is padded withn — k& zeros, and an IDFT ofi samples is taken. The words are then
transmitted, and at the receiving end a DFT of lengib computed. The. — £ words that
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were zero-padded (the syndrome) provide a window over the spectrum of the error signal.
The problem is how to use this information to recover the error signal itself.

3.1. Connections between the problems

Some of the problems described above turn out to be closely related or even equivalent.
Surprisingly, these connections do not seem to be widely recognized. An exception is perhaps
problems 2 and 5 — see [27] and references therein.

Problems 2 and 3 are clearly equivalent. kdbe the data vector, and denote By=
{i1,i9, ... ,1i,} the indices of the known samples of its DETIn problem 3 we are given the
possibly corrupted data vector and the sefi (i), z(i2), ... ,2(i,) }, whereas in problem 2
we are given just the corrupted data vector However, the hypothesis af being band-
limited implies that a known subset of the sample$ bfs zero value. This set plays the role
of £(iy), Z(42), ... ,2(ip) in problem 3. The only difference is that, in the band-limited case,
the known DFT samples are zer(i,) = 0 for all iy, € V.

Problems 2 and 4 are the dual of each other (the term “dual” is used here in the sense
explained in [11,12]). To understand why, denotelby= {i;, i, ...i,} the positions of-
incorrect samples of a band-limited signalvith a total ofn samples. Let be the error
signale = = — y, wherey is the observed signal, which coincides wittexcept for the
samples whose indices belonglfo Thus,e, = 0 for all & ¢ U. Typically, r, the cardinal of
U, is much less than, that is, the error vectaris sparse.

Let x be band-limited, withp zero harmonics. Then, the DFT gfcontains exactly
samples of the DFT of. For example, ifc is low-pass witl2m + 1 nonzero harmonics, then
the samplesn + 1 throughn — m — 1 of y are equal to the corresponding samples.dut
then problem 2 can be rephrased as follows: given a subgesarples of the DFE of e,
estimate:. Sinceeé is given by

é(i) = eliy) e,
k=1
this shows that the problem is equivalent to problem 4 {set i, /n), if the time and fre-
guency domains are interchanged. We say that each problem is the dual of the other.

Problem 2 and 5 are also closely related. The connection between problem 2 and certain
topics in information theory (error-control codes in the real field) has been noted before, but
does not seem to be widely known in the signal processing community. Specific algorithms
have been suggested to solve this problem; we refer to the method described in [43], which
is able to correct a single error, and to [14,27,44], for the correction of multiple errors.

3.2. The role of frames

The previous observations have several immediate consequences. Reference [41] offers one
example: an iterative method to solve problem 2, based on a discrete-discrete version of the
Papoulis-Chamzas nonlinear iteration [32], originally proposed to solve a problem similar to
problem 4 but inL,. Since problem 2 is equivalent to problems 3 and 5, the same algorithm
can be applied to solve any of these problems.

Obviously, understanding the connections between these problems increases the impact
of any study concerning one of them upon the others. We will concentrate, from this point
onwards, on a particular signal reconstruction problem — the missing data problem (prob-
lem 1). Our plan of attack is the following: we will define discrete finite frames, and the
problem of obtaining estimates for the frame bounds. After this we will consider the frame
algorithm, and see how it can be used to iteratively solve the missing data problem. The
convergence rate of the algorithm is determined by the values of the frame bounds.

Finally, we review a few other methods through which the missing data problem can be
solved. Some of these have already been mentioned, in reference to some of the problems
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considered. These additional links between the frame method and other methods help in
completing the picture that we have attempted to outline: from reconstruction problems to
frames, and then from frames back to the reconstruction problems.

4. Signal representation and discrete finite frames
4.1. Discrete finite frames

A countable subset, (n € Z) in a separable Hilbert space with inner prod{ict) and norm
|| - || is a frame if

> g fa) 1P < gl

neZ

for every elemeng of that Hilbert space. The notaticais a concise way of expressing the
fact that there exist constaris< a < 3, independent of,, and such that

allgl®* <> g, fa) P < Bllgll*.
nez

Any two such constanis and are called frame bounds.
Frames come in diverse flavors. For exampley i 3 the frame is said to be tight. We
will be concerned with discrete finite frames, that is, sets of vectors

{f17f27f37"' 7fn}a

where each of th¢f;. }1 <., belongs to the vector spaB¥, regarded as a finite-dimensional
Hilbert space when endowed with the usual inner product and norm. A recent introduction to
discrete finite frames can be found in [33].

4.2. Eigenvalues and singular values

The eigenvalues of alW x N Hermitian matrix are real. We adopt the convention that they
are labeled according to non-decreasing value,

A< Az... <Ay < Ay

The smallest (largest) eigenvalue of a Hermitian maitiis the solution to a certain con-
strained minimization (maximization) problem, namely

\ o Ax
= min ——F—
P a0 |72
Az

Ay — max ——.
z20 ||z ]2

The transpose of a vectaris denoted by:”, and the Hermitian transpose by'. The
inequalities

Mzl < 2 Az < Ayl

hold for allz € CV and are sharp. For exampleé! Av = ), ||v||?> whenv is an eigenvector
of A corresponding to the eigenvalue.

The singular values of a matrix are eigenvalues aftA”. They are of great impor-
tance in solving the numerical rank determination problem, and in many other problems and
applications.

An up-to-date general reference on matrix analysis is [19]. Specific matrix algorithms
(in a programming language similar to Matlab) and the theoretical background upon which
they rest are detailed in [16]. Implementations in the C programming language are given, for
example, in [34].
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4.3. The Fourier transform domain counterpart

We have been dealing with the samples:oft is certainly possible to consider the samples
of its Fourier transfornt. For this purpose it is convenient to consider the set of all solutions
zto

=T3¢+,
the N x N matrix1 being given by

T £ FTFY,

wherel is anNV x N diagonal matrix satisfying the same restrictions that were imposed upon
A above.
The role played by the vectorneeds some explanation. The set of solutions ef Bz
is interesting because many signals that occur in practice are approximately band-limited,
that is, there is a subset of samples of its DFT that is zero or very nearly zero. In a sense, the
spectrum of such signals is partially known and the known part happens to be zero. This is
seldom the case in the time-domain. Assume that a subset of the time-domain samples of a
signal is known. It can hardly be expected that all the known time-domain values are zero.
Multiplying the equation: = Tz + ¢ by F'¥ leads to

=1z +wv,

which shows that; = v; for all i such that’;; = 0. Note the role of» and the meaning af,
which determines the known time-domain samples.
The properties of” are similar to those oB above.T is Hermitian, and™? = T" implies

T =T.

The equatiort = 7'z + ¢ can be written in terms of the colum§$; } o<,y of T,

N—1
T = ;T + 0.
1=0
Also,
<E77—’]> = ﬂja
andifz =Tz + ¢ then
<£7T’z> - i'z - 67,

The interplay between time-domain and frequency-domain constraints, and its importance
for signal reconstruction, is the subject of [12].

4.4. A discrete finite frame
Consider the set of vectors
X = {Bi}ies
whereJ is an index set, that is, a subset of
Exy={0,1,2,... ,N —1}.

CanX be a frame for the vector subspace formed by the set afthlht satisfyr = Bz?
There is a trivial necessary condition: the index.Batust have at leagtelements, where

d is the dimension of the subspace of solutions to Bxz. For low-pass signals withM + 1

nonzero harmonics (see section 2.4) the necessary condition is, thecefdré,> 2M + 1.
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But we need more than a necessary condition, and so let us examine the frame condition.
Fix a vectorz € R" that satisfies = Bz. Then,

D B P =) |aif.

i€J ieJ

The following obvious inequality

> laif? <l
1eJ
shows thap = 1 is an upper frame bound (although not the best possible bound, as we will
shortly see).
The lower boundy requires some more work. The first question is the following: can
we guarantee that, apart from the zero vector, there exists no westmh thatt = Bx and
x; =0forallie J?
For low-pass signals, the answer is yes, and the proof is as follows [8]. The equation
r = Bz is equivalenttac = F¥ AFz, which, in turn, means that= Az. Therefore; = 0
foralli € {k: Ag, = 0}.
On the other hand)z = 0 means that; = 0 for all i € .J. Putting together the two sets
of conditions leads to

> Fyr;=0, i€ {k:Ay =0}
jed
For low-pass signals withM + 1 nonzero harmonics, the conditioard J > 2M + 1 and
the linear independence of the columngoyield = = 0.
It is possible to determine the best possible upper and lower bounds and at the same time

exhibit the signals for which the bounds are attained. The key to this is the following question:
among all signals satisfying= Bz, which particular signals render

N ZieJ |xz|2
B2 = =

maximum or minimum? Clearly, if the maximum is attained for a certain vegtand the
minimum for some other vector, then

E(J,v) < E(J,z) < E(J,u),
and consequently
D B P = P,
e
with the frame bounds = E(J,v) and = E(J, u).

This is really an eigenvalue problem in disguise. To confirm, recall the definition of the
N x N matrix in equation (1)

D2 1, ifi=jandi € J,
Y 1 0, otherwise
Clearly,
| Dz|?
and sincer = Bz,
DBz||?
B(J,z) = 1PBIE

[l
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Now, bothB and D are Hermitian, and so
|DBz|* = (DBz, DBz) = 2" B* D* DBz = 2" BDBu,

sinceD? = D. This shows that the maximization and minimization problems of interest are

H
max F(J,x) = max @,
r=Bx r=Bzx ||l’||
z#0 z#0

H
min F(J,z) = min @
r=Bx z=Bz ||l‘||
x#0 T#£0

But BD B is Hermitian, and therefore the solutions to these problems are, respectively, the
largest eigenvalue aB D B and its smalleshonzeroeigenvalue. If we agree to denote them
by Amax @and A, then

>, B [P =l

e
with the frame bounds
Q= Amin, = Amax-
The matrixB D B is nonnegative definite—the associated quadratic form can be written
2" BYD" DBz = |DBx|> > 0

—and therefore its eigenvalues cannot be negative. But the eigenvectors corresponding to the
zero eigenvalues cannot be considered here, because they do not:satisfy. As we have
seen, wherard J > 2M + 1,z = Bx and Dz = 0 imply x = 0. The eigenvectors that
correspond to the zero eigenvalues are “high-pass” signals that Jatisfy0.

The eigenvalues oB DB are singular values of the matri B. The analysis that has
been made, and the frame bounds obtained, are related to the singular value decomposition
of DB. But, althoughD B is not Hermitian, its eigenvalues are real and in fact equal to those
of BDB. This can be seen as follows.

Assume thaB D Bv = \v. Left multiplication byD B leads to( D B)*v = AD Bv, which
shows that\ is an eigenvalue oD B (it corresponds to the eigenvectbrBv). Thus, every
eigenvalue ofBD B is also an eigenvalue @b B.

Assume now thaDBv = \v. Left multiplication by B leads toBD Bv = ABv, which
is equivalent taB D BBv = ABw. But this means that is also an eingenvalue & D B, and
thus every eigenvalue dPB is also an eigenvalue @D B. Since the converse has already
been shown, it follows thaBD B, DB (as well as its transposeD) have the same set of
eigenvalues.

The eigenvectors aB.D B that correspond to its nonzero eigenvalues are generalizations
of the periodic discrete prolate spheroidal sequences (P-DPSS) [8, 21]. We say “general-
ization” only because we are interested in arbitrary gethe P-DPSS correspond to the
contiguous case, in whichis a set of consecutive integers modiNo

The eigenvector that correspondshig,, will be denoted by .., whereas,;, will de-
note the eigenvector corresponding to the smallest nonzero eigenvglueBoth satisfy
x = Bz, that is, both are band-limited. An example is given in figures 1b and 1c. Note how
the energy ofvm.x anduvy,;, IS concentrated inside or outside the “window” determined by
D, respectively. We will not explore the orthogonality of the P-DPSS, although that opens
interesting possibilities.
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The quantityF(.J, z) can be interpreted as an energy distributiod jrand

|DBa?
Bl = e

IS maximum whemn: = v,,, and minimum when: = v,,,;,. This happens for a certain, fixed
J. What happens iff varies?

Roughly speaking, wher is contiguous and the signals are low-pass, the lower bound
may turn out close to zero and the upper bound close to onkislimore evenly distributed,
this may not be so.

The figures 1la—c and 2a—c refer to two numerical examples. The figures 1a and 2a depict
the nonzero eigenvalues &fD B for two different sets/ (to keep the figures readabl®,
and M were given quite low values but the algorithms can certainly be used for much larger
problems). The eigenvectors., andv,,;, are shown in figures 1b—c and 2b—c. Bear in mind
thatcard J was kept constant in both examples, and note the effettoof the frame bounds
and the behavior of the eigenvectors. These are important points to understand the numerical
stability of the reconstruction problem — see also [8], and [10, 13].

The importance of the prolate spheroidal wave functions—in connection with time-frequency
concentration, uncertainty and other related issues—was stressed by Slepian, Landau and Pol-
lak in an important series of papers, known as “the Bell papers”. See, for example, [24,37,38].

5. The frame algorithm

The frame operator associated with the frakhé= {B;};c; is

Sf£Y (f,B) B

ieJ
The basic frame algorithm is the iteration

f = FOmY 4 uS(f - £,
wherey is a real constant, given by

2
a+ 3
anda and§ are the frame bounds. The frame algorithm converges geometrically, at a rate

given by
(+a)
B+a)

This is the best possible ratedf and 5 are the best possible frame bounds. See, for ex-
ample, [3, 6]. There are other variants and possibilities, but this is the simplest possibility.
Acceleration of this basic iteration is discussed in [17].

We have seen that the frame bounds are- A\, > 0 andf = M. < 1, and this
determines:. It is possible to avoid computing,., and An,;,, and use estimates farand
(3. However, for missing data problems, computation of the bounds for several possible sets
J, particularly those that are known to occur more often, can provide accurate information
concerning the numerical difficulty of the reconstruction problem.

Recalling that f, B;) = f; for any f satisfyingf = Bf, we see that the frame operator
can be computed using

:u:

Sf=)_ fib:

e
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FIGURE 1. Firstexample. (a) The nonzero eigenvalueB 6fB. (b) The eigenvector
vmax Of BDB that corresponds to its largest eigenvalygy. (c) The eigenvector
vmin OFf BD B that corresponds to its smallest nonzero eigenvajug.

The frame operator depends only on the samplegth i € J. If these samples are known
and all the others are unknown (say, because they were corrupted,still well defined,
and the frame algorithm can then be used to recover the remaining samples.

The iteration can be written more explicitly as

fO =y - 5B

JjeJ
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FIGURE 2. Second example. (a) The nonzero eigenvalue8RB. (b) The eigen-
vectorvmax Of BD B that corresponds to its largest eigenvalyg,. () The eigen-
vectorvmi, of BD B that corresponds to its smallest nonzero eigenvajyg.

or, in terms of the samples,

1= 1 Y By (s = 1),

JjeJ
Introducing again the matrik defined by (1), this becomes

S = "7V 4+ uBD(f = f*7Y),

49
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FIGURE 3. The optimum value of. in the frame algorithm: if /4 is not the average
Of Amax andAmin, €ither A or B will increase.

or, in slightly different form,
f® = uBDf + (I — uBD)f",

wherel is the identity matrix. The matrix — pBD is called the iteration matrix.
The iteration converges if and only if the spectral radius of the iteration matix;-
uBD), is below unity. This will be the case if

11— pp(BD)| < 1,
which shows that, for convergence,
up(BD) < 2.

The optimum value of: is indeedu = (Amax + Amin)/2 (refer to figure 3).
We will examine some of the connections between the frame algorithm and a few other
methods in the next section.

6. The connections with other methods
6.1. Constrained restoration

The discrete finite frame algorithm can of course be obtained using methods that appear to
bear no direct connection to frames, and that predate the widespread use of frames in signal
processing and engineering applications. The framework for constrained signal restoration
discussed in [35] is one of these methods.

Assume that the signdlis distorted, the mathematical model for the distortion being an
operatorD. The result of applying> to f is available, butf itself is unknown: the signal
restoration problem is an inverse problem.

Thea priori knowledge concerning the signAlis expressed through one or more con-
straints. In this case, the relevant constraint is band-limiting, that is, one assumgs that
satisfies an equation such as

sin[r(2M + 1)(i — j)/N]
Zf] N sin[r(i — j)/N]

in the finite-dimensional vector case, or
“+00

i = [ patnelt=o

d
. Tt—xz)
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in Ly(R). These are examples, but in the general case the equations will still be of the form
f = Bf. The method starts from the identity

f=Bf+ulg— DBf),
whereg = Df = DB/ is the distorted (observed) signal, and proceeds by iteration

(6) f =B + u(g — DBF").

The convergence can be established using fixed-point theorems. Other known constraints
(linear or nonlinear) can readily be incorporated in the basic iteration.

In the finite-dimensional setting, the distorti@hcan be thought of as multiplication by
the matrixD defined by (1). The effect of band-limiting is to constrain the solution to the
subspace of (say) low-pass signals, solutionste Bz, whereB is the circulant matrix used
before.

To compare the iteration (6) with the frame algorithm, note that appl¥ing both sides
of (6) leads to

Bf™ = Bf"=Y 4 1 (Bg — BDBf"™Y).
But g = BDf, and so this turns out to be equivalent to
f* = fo0 4+ uBD(f = f"71),

which is the frame algorithm.

6.2. The Papoulis-Gerchberg iteration

Let f = Bf and assume that some of the samplegafe known. Our task is to determine the
remaining samples. Assume that the known sampleg are J. With the help of the matrix
D defined by (1), the given data can be writterf. As we have seen before, the Papoulis-
Gerchberg iteration, originally introduced [15, 30, 31] as an extrapolation / superresolution
method forL,(R) signals, can be used to approach this problem. The algorithm consists
of two steps, one of which is band-limiting (application of the operathr The other step
enforces the time-domain knowledge, that is, it resets the known part of the signal to its true
value.

In the finite-dimensional setting [8] band-limiting is multiplication by the circulant matrix
B. Equation 3 shows how to insert the values of the known samples in a given xvector

Pz = (I — D)z + Df

Given the result of iteration — 1, f(»=1), the Papoulis-Gerchberg iteration produces a new
approximationf(™ to f according to the rulg™ = PB {1 thatis,

F™ = (I —D)Bf™ Y 4+ Df.

Reversing the order of the two operations, that is, definfitig by f = BPf™=1, or
applying the band-limiting operator to both sides of the previous equation, leads to

f™ = B(I - D)f"Y + BDY.
This is equivalent to
f® =BV + BD(f - f").

It is possible to replac® f~1 by f(»=1, since the result of the iterations will be band-
limited, if the initial vector was itself band-limited. Taking that step leads to the frame algo-
rithm, with . = 1.
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6.3. Alternating projections and POCS

The two operations upon which the Papoulis-Gerchberg method rests are projections onto
convex sets. Band-limiting is a projection, aBds a projection matrix. Note thad? = B.
In this case, the convex set is just the subspace of band-limited signals.
The operator” defined by (3) is also a projection. Note tlaf = f, and thatP? = P.
In this case, the convex set is the set of all signalghose samples;, for i € .J, agree with
the given datd;, i € J.

Hence, the Papoulis-Gerchberg iteration is an alternating projection method of the type
discussed in [45]. This, inturn, is a special case of the POCS method [36,46]. This opens new
possibilities for incorporating nonlinear constraints in the problem (maximum or minimum
amplitudes, positive or nonnegative character of the solution, and so on).

7. Comments and conclusion

We discussed a number of problems in signal reconstruction, error-control coding, fault-
tolerant computing, and spectrum analysis. After examining the connections between these
problems, we developed a tutorial exposition of frames in connection with the missing data
problem. The frame bounds and the extremal signals of the restoration problem were re-
lated to the eigenvalues and eigenvectors of certain matrices. For extrapolation problems, the
eigenvectors reduce to the periodic discrete prolate spheroidal wave sequences.

The finite-dimensional theory, despite its mathematical simplicity, is extremely useful for
practical digital signal processing applications, which invariably involve a finite number of
samples. Itis also enlightening, because it exhibits many of the algebraic aspects that subsist
in the more abstract and mathematically interesting settings, without the analytic subtleties
that occur, for example, when dealing with limit processes and their interchange.

The frame algorithm is capable of acceptably good performance under certain conditions,
but the convergence rate falls to very low values whengyer > 1. These problems have
been recognized, and there are several well understood ways of circumventing them, some of
which are explored in the references that have already been given.

Among the possible solutions, we point out Chebyshev acceleration and conjugate gra-
dient acceleration [17], and the adaptive weights method. See, for example, [7], which dis-
cusses several analytical and numerical aspects of the sampling problem. Another possibility
is to interchange the time and frequency domains and try to solve for the DFTnstead
of solving for f itself (using a frame based on the columns of the matrixntroduced in
section 4.3, instead of a frame of column vectord3f Yet another possibility is to refor-
mulate the problem as a nonsingular set of linear equations. This is proposed, for example,
in [18, 39] and [9]. The equations may then be solved using any of the standard methods,
either iterative, noniterative, or semi-iterative [16, 40,47]. Also in this case there is a choice,
between the time-domain and the frequency-domain, as explained in [12]. The improvements
that can be obtained using these techniques are substantial, often leading to performance that
exceeds by orders of magnitude the simplest iterative methods.
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