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ABSTRACT. Certain signal reconstruction problems can be understood in terms of
frames and redundant representations. The redundancy is useful because it leads to
robust signal representations, that is, representations in which partial loss of data can
be tolerated without misbehavior or adverse effects. This chapter begins by present-
ing a few engineering problems in which robust data representations play a central
role. It turns out that these problems, which occur in signal processing, spectrum
analysis, information theory, and fault-tolerant computing, are closely related or even
equivalent. However, perhaps surprisingly, the connections between them have gone
nearly unnoticed so far. Frames, and in particular discrete finite frames, provide one
of the ways of understanding certain of these problems, including the important miss-
ing data problem. Some of the methods that can be used to recover from missing data
errors are examined, emphasizing finite-dimensional theory because of its simplicity
and practical usefulness, and interpreting the results in terms of discrete finite frames.
The connection between the frame algorithm and a few other iterative reconstruction
methods, such as POCS and the Papoulis-Gerchberg iteration, is detailed.

1. Introduction

Redundant data representations are useful in a variety of contexts. Their theoretical interest
can hardly be denied — it is enough to consider the concept of “frame” and its role in mathe-
matics and engineering. On the other hand, redundancy usually leads to robustness which, in
turn, suggests several applications. Loosely speaking, a signal representation is robust when
partial loss of data does not lead to misbehavior or severe adverse effects.

This chapter discusses frames and their usefulness in connection with certain problems
that arise in interpolation, spectrum analysis, error-control coding, and fault-tolerant comput-
ing. We believe that the relations between these problems have gone nearly unnoticed so far.
Some of the problems are shown to be equivalent in the following sense: if one of them can
be solved using a certain algorithm, so can the other, using essentially the same algorithm.
The specific problems that will be considered are: (i) the band-limited missing data prob-
lem; (ii) a nonlinear interpolation problem; (iii) the problem of estimating a signal that is the
superposition of a finite number of harmonics; (iv) an error-control coding problem, formu-
lated in the real field; and (v) certain techniques that occur in algorithm-based fault tolerant
computing.

The advantages of studying the relations among these problems are clear. The techniques
commonly used in one field can be imported to the others, the duplication of research efforts is
prevented, the overall degree of understanding of the problems increases, and new algorithms
emerge as a result.

The research that lead to this work was supported by the JNICT/FCT.
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After discussing the above mentioned problems we will introduce the concept of frame.
Frames were introduced by Duffin and Schaeffer [6] in 1952, in reference to nonharmonic
Fourier series. The importance of the ideas underlying that paper was recognized by the
scientific community, especially after the early 80’s, when frames started what Daubechies
called their “second career” [4].

Frames became one of the fundamental concepts in time-frequency and time-scale anal-
ysis and wavelet series. They are the central topic of many papers, and a variety of books
carry discussions of frame theory. A clear introduction can be found, for example, in [48]
or [3]. The recent issue ofThe Journal of Fourier Analysis and Applicationsdedicated to
Richard J. Duffin offers many further examples of the mathematical importance of frames.
Their significance in the context of signal analysis and engineering applications is also widely
recognized.

Our motivation for introducing frames is the following: discrete finite frames provide one
of the ways of approaching the missing data problem mentioned above. And the solution to
this problem can be put to use when studying the other problems as well.

We will attempt to show how frames can be used to deal with missing data, emphasiz-
ing finite-dimensional theory because of its simplicity and practical usefulness. Robust signal
representations are important for signal analysis and processing applications, and frames pro-
vide redundant representations. Redundancy is a necessary requirement for robustness, in the
sense of information theory: if a data stream has no redundancy, error detection (not to men-
tion error correction!) is impossible. Adding redundant data makes error detection possible
(consider adding parity bits to a bit stream). Adding even more redundancy may allow for
both error detection and correction.

This is often accomplished by error control coding in Galois (finite) fields. We will not
follow this path: instead, we will work in the complex or real fields. This has advantages
and disadvantages. One one hand, the block length restrictions that arise when dealing with
finite fields can be circumvented (for example, the discrete Fourier transform and many other
unitary transforms can be defined inRN , that is, for signals ofN samples, for anyN > 1).
On the other hand, arithmetic in the real and complex fields is prone to round-off error: exact
real arithmetic is technically impossible in practice.

Nevertheless, the approach used will hopefully bridge the gap between frames, signal re-
construction, and the problems mentioned initially. To emphasize the multiple connections
between these topics we will consider a few of the iterative methods available for interpolating
and extrapolating signals, which were used for signal reconstruction purposes before frames
became popular alternatives: the Papoulis-Gerchberg iteration, alternating projections, pro-
jections onto convex sets (POCS), and more.

We will clarify the relation between the frame algorithm and these other methods, and
show how the frame bounds relate to their numerical performance or convergence rate. At
the end, we will hopefully have a better grasp of the mathematical foundations of finite-
dimensional signal reconstruction and a few other seemingly unrelated problems.

2. Notation and preliminaries

2.1. The discrete Fourier transform

The Fourier matrixF is theN �N matrix with elements

Fij =
1p
N
e�i

2�

N
ij:

The symboli denotes the imaginary unit, not to be confused withi or j, which denote
integers. The Fourier matrix is unitary, that is, its inverse is simply the Hermitian transpose:

FHF = FFH = I:
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The discrete Fourier transform (DFT) ofx is denoted bŷx, and is defined by

x̂
4

= Fx:

Computing the discrete Fourier transform̂x = Fx seems to requireO(N2) arithmetic op-
erations, as any general matrix-vector product inC N . However,F is a very special matrix
and the computation of the DFT (equivalently, of the matrix productx̂ = Fx) can be sped
up considerably. The number of necessary arithmetic operations (flops) can often be made as
low asO(N log2N), using the fast Fourier transform (FFT).

We say “often” because the computational load depends on the structure of the number
N . WhenN is a highly composite number, such as a power of two, the computations are
easier. For details and applications of the FFT, see, for example, [2,42].

2.2. Circulants

A N �N matrixC is circulant if it has the following structure:

C =

2
6666664

c0 c1 � � � cN�1
cN�1 c0 � � � cN�2
cN�2 cN�1 � � � cN�3
cN�3 cN�2 � � � cN�4
...

...
...

...
c1 c2 � � � c0

3
7777775
:

Each row ofC can be obtained from the preceding row by shifting its elements one position
to the right and “wrapping around”. This is called a circular shift, and the matrix-vector
multiplicationCx is called circular convolution.

All circulants commute, a consequence of the decomposition

C = FH�F

where� is diagonal. For our purposes, this is the most important fact concerning circulants.
It asserts that the Fourier matrixF diagonalizes all circulants.

The eigenvalues of a circulant can be found rather easily, often inO(N log2N) flops
when using the FFT algorithm, because they are determined by theN elements of the DFT
of one of the rows or columns of the circulant. The FFT is also useful for computing circular
convolutions, because

Cx = FH�Fx = FH�x̂:

The DFT vector̂x can often be computed inO(N log2N) flops, as well as the multiplication
by FH (the inversion of the DFT). Multiplication by the diagonal matrix� is anO(N)-flop
task, and the conclusion is that circular convolution inC N can be evaluated inO(N log2N)
flops.

Circulants are a remarkably simple but interesting class of matrices. Many matrix prob-
lems, when formulated in terms of circulants, admit closed form solutions. For details con-
cerning circulant matrices see [5].

2.3. A class of circulant matrices

We will need to consider the expansion of signalsx of N samples, that is, vectors inRN

or C N , in terms of certain non-orthogonal vectors. To introduce these vectors, consider the
N �N circulant matrixB given by

B
4

= FH�F;

where� is anN � N diagonal matrix. It is assumed that�ii = 1 or �ii = 0, that is,� is a
zero-one diagonal matrix (and consequently�2 = �). To avoid trivialities, it is preferable to
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exclude the possibility of having� = 0, the zero matrix, or� = I, the identity matrix. The
matrixB is Hermitian, and satisfies

B2 = B

because�2 = �. Consider the set of vectors that satisfy the equation

x = Bx:

It is easily seen that this set is not empty and that it forms a subspace ofRN .
The linear operatorx ! Bx can be regarded as a linear system or filter. Its action upon

a signalx can be easily understood in terms of� and the Fourier transform̂x of x. The
sampleŝxi such that�ii = 1 are preserved by the system. The remaining samplesx̂j, for
which�jj = 0, are set to zero.

By definition, the pass-band ofB is the setP of integers for which�ii = 1. The signals
x that satisfyx = Bx are those whose Fourier transform is supported in the pass-band ofB.
We will refer to them as band-limited signals.

The decompositionB = FH�F means that

Bij =
N�1X
k=0

FH
ik�kkFkj

=
X
k2P

FH
ik Fkj;

whereP is the pass-band ofB (�kk = 0 for any integer0 � k < N that does not belong to
P ). This shows thatB can be written asB = EHE, where the columns of the matrixE are
the columnsFi of the Fourier matrix withi 2 P .

The equationx = Bx can also be written in terms of the columnsfBig0�i<N of B,

x =
N�1X
i=0

xiBi:

B is idempotent, andB2 = B implies

hBi; Bji = Bij;

and ifx satisfiesx = Bx then

hx;Bii = xi:

2.4. An example: low-pass signals

Let the main diagonal of� be given by

[1; 1; : : : ; 1| {z }
M times

; 0; : : : ; 0; 1; : : : ; 1| {z }
M times

]:

SinceB = FH�F , this immediately translates into

Bij =
MX

k=�M

e�i
2�

N
(i�j)k

=
sin[�(2M + 1)(i� j)=N ]

N sin[�(i� j)=N ]
:

In terms of the samples ofx, x = Bx becomes

xi =
N�1X
j=0

xj
sin[�(2M + 1)(i� j)=N ]

N sin[�(i� j)=N ]
:
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In this case, the signals such thatx = Bx are called low-pass signals andB is a low-pass
filter matrix. Note the similarity between the previous equation and

f(t) =

Z +1

�1

f(x)
sinw(t� x)

�(t� x)
dx

which is satisfied by anyf 2 L2(R) if and only if its Fourier transform vanishes almost
everywhere outside[�w;w]. A signal belonging toL2(R) is band-limited if its Fourier trans-
form vanishes outside a compact set. When the support is an interval of the form[�w;w]
the signal is called low-pass. Band-pass signals are characterized by a Fourier transform that
vanishes outside[�b;�a] [ [a; b].

3. Robust data representations: some related problems

The missing data problem is the signal reconstruction problem around which this chapter
turns. To relate it to the interpolation, extrapolation or prediction problems it is only neces-
sary to consider specific distributions of the missing data (in the extrapolation problem the
known data are contiguous, in the prediction problem the past of the signal is known). These
problems are widely known in signal processing and in other fields (consider superresolu-
tion in optics, for example). The most common constraint imposed upon the signal is that of
band-limitedness.

PROBLEM 1 (missing data).To determine a subset of the samples of a band-limited sig-
nal.

Note that we are referring to finite-dimensional signals, and therefore assertions such as
“x is band-limited” mean “there exists a low-pass circulant matrixB belonging to the class
mentioned in section 2.3 and such thatx = Bx”. This will be tacitly assumed from now on.

One of the methods for solving this problem is the Papoulis-Gerchberg algorithm, in
which the known time and frequency domain constraints are applied iteratively. LetJ be the
set of known samples, and letD be the diagonal matrix

Dij
4

=

�
1; if i = j andi 2 J;
0; otherwise:

(1)

The initialization step of the algorithm sets the unknown samples to some initial value. This
yields the first approximationx(0). The first half of thenth step of the algorithm consists in
filtering the result of the previous step, that is,

y = Bx(n�1):(2)

This imposes the frequency-domain constraints (the resulty is band-limited). But this filter-
ing changes the values of the known samples. Thereforey can be improved simply by setting
the samplesyi, i 2 J , back to their known values. It can be readily verified that, given an
arbitrarya; b 2 C N , the operatorP defined by

Pa
4

= (I �D)a+Db(3)

can be used to enforce these time-domain constraints. It is enough to note that(Pa)i andbi
will agree for alli 2 J , a fact that follows at once from the definition ofD in (1). Applying
this principle toy leads to

x(n) = (I �D)y +Dx(0):(4)

This sets the samplesyi, i 2 J , to their initial and correct values, completing the second half
of stepn. The two operations (2) and (4) can readily be combined in one equation,

x(n) = (I �D)Bx(n�1) +Dx(0);
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which describes thenth step of the algorithm. The process can be repeated until a satisfactory
result is found.

For more concerning the Papoulis-Gerchberg iteration and similar methods, see, for ex-
ample, [8, 22, 25, 26]. These methods and several others can be applied only if the positions
of the unknown samples are known. In practice, this is not always the case, and the following
problem arises.

PROBLEM 2. To simultaneously determine the number, positions and correct values of
the incorrect samples of a band-limited signal corrupted by impulsive noise.

This is a nonlinear problem. It can be approached in two steps: in the first step the number
and positions of the incorrect samples are estimated. As soon as the positions of the incorrect
samples have been estimated, the problem reduces to the missing data problem.

How can the corrupted samples be detected? One solution is as follows. Let

U = fi0; i1; : : : in�1g
denote the positions of then incorrect samples of a band-limited signalx 2 RN . Lety denote
the observed signal, which coincides withx except for the samples whose indices belong to
U , and lete = x � y be the error signal. It is convenient to denote thekth sample ofe by
e(k). Observe thate(k) = 0 for all k =2 U . In practice, the cardinal ofU is usually much
smaller thanN , that is,e is sparse. Consider the polynomial

P (z) =
nX
i=0

hiz
i;

defined byhn = 1 and

P
�
e�i

2�

N
im

�
= 0;(5)

for m = 0; 1; : : : ; n� 1. Let

A = fj0; j1; j2; : : : g
be a set of distinct integers. Multiplying (5) bye(im)ei

2�

N
imj` and summing leads to

nX
k=0

hk

n�1X
m=0

e(im)e
�i 2�

N
im(k�j`) = 0;

which is equivalent to
nX

k=0

hk ê(k � j`) = 0;

whereê = Fe is the DFT ofe. Using the fact thathn = 1, one obtains
n�1X
k=0

hk ê(k � j`) = �ê(n� j`);

and proper choice of thej` leads to a set of linear equationsTh = b for the coefficientshk
of the polynomialP . The zeros of the polynomial, and consequently the position and the
number of errors, can be easily determined using the FFT algorithm. For details, see [14,44].

It is time to consider an apparently distinct problem: fault tolerant computing. Consider
a parallel computer, perhaps composed of many individual processing units, each having a
certain probability of failure. It is of course desirable that a failure in one of the processing
units does not bring the whole system to a halt or crash. Instead, one would like to be able
to continue the processing using only the operating units, and perhaps shutting down those
that have failed. To do this it is clearly necessary to detect the fault, and then, if possible,
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to correct the data. One of the approaches to fault detection is algorithm-based, that is, the
faults are detected by algorithms, or software, often using the known properties of the data
being processed.

For example, denote byx a vector inRN , with N large. Assume that the DFT ofx is
being computed, possibly with the help of several processing units, and lety be the result
of the computation. Ify is indeed the DFT ofx, thenkxk = kyk, a condition that is easy
to check. Similar norm checks can be made for example after completing each stage of the
fast Fourier transform algorithm. They of course depend on the type of computation being
performed, and cannot be applied without changes, say, when inverting a matrix.

However, there are also general methods for checking the accuracy of a result that are to
a large extent independent of the type of data manipulation being carried out. Checksums
provide the most obvious example.

Work along these lines has been carried out by several authors [1,20,28,29]. The check-
sums can be computed modulo an integer (a parity bit is a checksum modulo two). In the
real field, the checksums can be replaced by the average value of the data. Weighted check-
sums have also been used to extend the error-correcting capabilities. The weighted checksum
problem is similar to the following general problem.

PROBLEM 3. Given a possibly corrupted subset of data samples, and a subset of the
samples of a discrete orthonormal transform of the data (such as the DFT), determine the
data.

Note that the first sample of the DFT of a data vectorx 2 RN

x̂0 =
N�1X
k=0

xk

is proportional to the average of the data (the checksum). Any other DFT samples that might
also be known constitute weighted checksums, that may help in determining the data after
the occurrence of errors. Clearly, transforms other than the DFT might also be used for this
purpose.

The next problem is a widely known spectrum analysis problem.

PROBLEM 4. Given a subset of the samples of a signal, which is known to consist of a
linear combination of harmonics of unknown frequencies and amplitudes,

x(t) =
rX

k=1

ak e
�i2�fkt

determine the signal.

This problem is very well-studied, and many methods (parametric and nonparametric)
have been proposed to solve it. A comprehensive review of the spectrum analysis techniques
up to 1981 can be found in [23].

We mention the method of Papoulis and Chamzas [32], for example, which is a modified
Papoulis-Gerchberg iteration in which the filtering step is replaced by a non-linear operation:
Fourier transforming, thresholding the spectrum, and inverse Fourier transforming.

The last problem that we consider is the following.

PROBLEM 5. The error-control problem in the real field: devise a coding procedure ca-
pable of locating and correcting up to a certain number of errors in a finite-length block of
real numbers.

One of the techniques that can be used is as follows. An initial block ofk data words
is padded withn � k zeros, and an IDFT ofn samples is taken. Then words are then
transmitted, and at the receiving end a DFT of lengthn is computed. Then � k words that
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were zero-padded (the syndrome) provide a window over the spectrum of the error signal.
The problem is how to use this information to recover the error signal itself.

3.1. Connections between the problems

Some of the problems described above turn out to be closely related or even equivalent.
Surprisingly, these connections do not seem to be widely recognized. An exception is perhaps
problems 2 and 5 — see [27] and references therein.

Problems 2 and 3 are clearly equivalent. Letx be the data vector, and denote byV =
fi1; i2; : : : ; ipg the indices of the known samples of its DFTx̂. In problem 3 we are given the
possibly corrupted data vectorx, and the setfx̂(i1); x̂(i2); : : : ; x̂(ip)g, whereas in problem 2
we are given just the corrupted data vectorx. However, the hypothesis ofx being band-
limited implies that a known subset of the samples ofx̂ has zero value. This set plays the role
of x̂(i1); x̂(i2); : : : ; x̂(ip) in problem 3. The only difference is that, in the band-limited case,
the known DFT samples are zero:x̂(ik) = 0 for all ik 2 V .

Problems 2 and 4 are the dual of each other (the term “dual” is used here in the sense
explained in [11, 12]). To understand why, denote byU = fi1; i2; : : : irg the positions ofr
incorrect samples of a band-limited signalx with a total ofn samples. Lete be the error
signale = x � y, wherey is the observed signal, which coincides withx except for the
samples whose indices belong toU . Thus,ek = 0 for all k =2 U . Typically,r, the cardinal of
U , is much less thann, that is, the error vectore is sparse.

Let x be band-limited, withp zero harmonics. Then, the DFT ofy contains exactlyp
samples of the DFT ofe. For example, ifx is low-pass with2m+1 nonzero harmonics, then
the samplesm+ 1 throughn�m� 1 of y are equal to the corresponding samples ofe. But
then problem 2 can be rephrased as follows: given a subset ofp samples of the DFT̂e of e,
estimatee. Sinceê is given by

ê(i) =
rX

k=1

e(ik) e
�i 2�

n
iki;

this shows that the problem is equivalent to problem 4 (sett = ik=n), if the time and fre-
quency domains are interchanged. We say that each problem is the dual of the other.

Problem 2 and 5 are also closely related. The connection between problem 2 and certain
topics in information theory (error-control codes in the real field) has been noted before, but
does not seem to be widely known in the signal processing community. Specific algorithms
have been suggested to solve this problem; we refer to the method described in [43], which
is able to correct a single error, and to [14,27,44], for the correction of multiple errors.

3.2. The role of frames

The previous observations have several immediate consequences. Reference [41] offers one
example: an iterative method to solve problem 2, based on a discrete-discrete version of the
Papoulis-Chamzas nonlinear iteration [32], originally proposed to solve a problem similar to
problem 4 but inL2. Since problem 2 is equivalent to problems 3 and 5, the same algorithm
can be applied to solve any of these problems.

Obviously, understanding the connections between these problems increases the impact
of any study concerning one of them upon the others. We will concentrate, from this point
onwards, on a particular signal reconstruction problem — the missing data problem (prob-
lem 1). Our plan of attack is the following: we will define discrete finite frames, and the
problem of obtaining estimates for the frame bounds. After this we will consider the frame
algorithm, and see how it can be used to iteratively solve the missing data problem. The
convergence rate of the algorithm is determined by the values of the frame bounds.

Finally, we review a few other methods through which the missing data problem can be
solved. Some of these have already been mentioned, in reference to some of the problems
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considered. These additional links between the frame method and other methods help in
completing the picture that we have attempted to outline: from reconstruction problems to
frames, and then from frames back to the reconstruction problems.

4. Signal representation and discrete finite frames

4.1. Discrete finite frames

A countable subsetfn (n 2 Z) in a separable Hilbert space with inner producth�; �i and norm
k � k is a frame if X

n2Z

j hg; fni j2 � kgk2

for every elementg of that Hilbert space. The notation� is a concise way of expressing the
fact that there exist constants0 < � � �, independent ofg, and such that

�kgk2 �
X
n2Z

j hg; fni j2 � �kgk2:

Any two such constants� and� are called frame bounds.
Frames come in diverse flavors. For example, if� = � the frame is said to be tight. We

will be concerned with discrete finite frames, that is, sets of vectors

ff1; f2; f3; : : : ; fng;
where each of theffkg1�k<n belongs to the vector spaceRd , regarded as a finite-dimensional
Hilbert space when endowed with the usual inner product and norm. A recent introduction to
discrete finite frames can be found in [33].

4.2. Eigenvalues and singular values

The eigenvalues of anN � N Hermitian matrix are real. We adopt the convention that they
are labeled according to non-decreasing value,

�1 � �2 : : : � �N�1 � �N :

The smallest (largest) eigenvalue of a Hermitian matrixA is the solution to a certain con-
strained minimization (maximization) problem, namely

�1 = min
x 6=0

xHAx

kxk2 ;

�N = max
x 6=0

xHAx

kxk2 :

The transpose of a vectorx is denoted byxT , and the Hermitian transpose byxH . The
inequalities

�1kxk2 � xHAx � �Nkxk2
hold for allx 2 C N and are sharp. For example,vHAv = �1kvk2 whenv is an eigenvector
of A corresponding to the eigenvalue�1.

The singular values of a matrixA are eigenvalues ofAAH . They are of great impor-
tance in solving the numerical rank determination problem, and in many other problems and
applications.

An up-to-date general reference on matrix analysis is [19]. Specific matrix algorithms
(in a programming language similar to Matlab) and the theoretical background upon which
they rest are detailed in [16]. Implementations in the C programming language are given, for
example, in [34].
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4.3. The Fourier transform domain counterpart

We have been dealing with the samples ofx. It is certainly possible to consider the samples
of its Fourier transform̂x. For this purpose it is convenient to consider the set of all solutions
x̂ to

x̂ = T x̂ + v̂;

theN �N matrixT being given by

T
4

= F�FH;

where� is anN�N diagonal matrix satisfying the same restrictions that were imposed upon
� above.

The role played by the vector̂v needs some explanation. The set of solutions ofx = Bx
is interesting because many signals that occur in practice are approximately band-limited,
that is, there is a subset of samples of its DFT that is zero or very nearly zero. In a sense, the
spectrum of such signals is partially known and the known part happens to be zero. This is
seldom the case in the time-domain. Assume that a subset of the time-domain samples of a
signal is known. It can hardly be expected that all the known time-domain values are zero.

Multiplying the equation̂x = T x̂ + v̂ by FH leads to

x = �x + v;

which shows thatxi = vi for all i such that�ii = 0. Note the role of̂v and the meaning ofv,
which determines the known time-domain samples.

The properties ofT are similar to those ofB above.T is Hermitian, and�2 = � implies

T 2 = T:

The equation̂x = T x̂+ v̂ can be written in terms of the columnsfTig0�i<N of T ,

x̂ =
N�1X
i=0

x̂iTi + v̂:

Also,

hTi; Tji = Tij;

and if x̂ = T x̂+ v̂ then

hx̂; Tii = x̂i � v̂i:

The interplay between time-domain and frequency-domain constraints, and its importance
for signal reconstruction, is the subject of [12].

4.4. A discrete finite frame

Consider the set of vectors

X
4

= fBigi2J
whereJ is an index set, that is, a subset of

EN
4

= f0; 1; 2; : : : ; N � 1g:
CanX be a frame for the vector subspace formed by the set of allx that satisfyx = Bx?

There is a trivial necessary condition: the index setJ must have at leastd elements, where
d is the dimension of the subspace of solutions tox = Bx. For low-pass signals with2M +1
nonzero harmonics (see section 2.4) the necessary condition is, therefore,card J � 2M + 1.
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But we need more than a necessary condition, and so let us examine the frame condition.
Fix a vectorx 2 R

N that satisfiesx = Bx. Then,X
i2J

j hx;Bii j2 =
X
i2J

jxij2:

The following obvious inequality X
i2J

jxij2 � kxk2

shows that� = 1 is an upper frame bound (although not the best possible bound, as we will
shortly see).

The lower bound� requires some more work. The first question is the following: can
we guarantee that, apart from the zero vector, there exists no vectorx such thatx = Bx and
xi = 0 for all i 2 J?

For low-pass signals, the answer is yes, and the proof is as follows [8]. The equation
x = Bx is equivalent tox = FH�Fx, which, in turn, means that̂x = �x̂. Therefore,̂xi = 0
for all i 2 fk : �kk = 0g.

On the other hand,Dx = 0 means thatxi = 0 for all i 2 J . Putting together the two sets
of conditions leads to X

j2J

Fijxj = 0; i 2 fk : �kk = 0g:

For low-pass signals with2M + 1 nonzero harmonics, the conditioncard J � 2M + 1 and
the linear independence of the columns ofF yield x = 0.

It is possible to determine the best possible upper and lower bounds and at the same time
exhibit the signals for which the bounds are attained. The key to this is the following question:
among all signals satisfyingx = Bx, which particular signals render

E(J; x)
4

=

P
i2J jxij2
kxk2

maximum or minimum? Clearly, if the maximum is attained for a certain vectoru, and the
minimum for some other vectorv, then

E(J; v) � E(J; x) � E(J; u);

and consequently X
i2J

j hx;Bii j2 � kxk2;

with the frame bounds� = E(J; v) and� = E(J; u).
This is really an eigenvalue problem in disguise. To confirm, recall the definition of the

N �N matrix in equation (1)

Dij
4

=

�
1; if i = j andi 2 J;
0; otherwise:

Clearly,

E(J; x) =
kDxk2
kxk2 ;

and sincex = Bx,

E(J; x) =
kDBxk2
kxk2 :
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Now, bothB andD are Hermitian, and so

kDBxk2 = hDBx;DBxi = xHBHDHDBx = xHBDBx;

sinceD2 = D. This shows that the maximization and minimization problems of interest are

max
x=Bx
x 6=0

E(J; x) = max
x=Bx
x6=0

xHBDBx

kxk2 ;

min
x=Bx
x 6=0

E(J; x) = min
x=Bx
x6=0

xHBDBx

kxk2 :

But BDB is Hermitian, and therefore the solutions to these problems are, respectively, the
largest eigenvalue ofBDB and its smallestnonzeroeigenvalue. If we agree to denote them
by �max and�min, then X

i2J

j hx;Bii j2 � kxk2;

with the frame bounds

� = �min; � = �max:

The matrixBDB is nonnegative definite—the associated quadratic form can be written

xHBHDHDBx = kDBxk2 � 0

—and therefore its eigenvalues cannot be negative. But the eigenvectors corresponding to the
zero eigenvalues cannot be considered here, because they do not satisfyx = Bx. As we have
seen, whencard J � 2M + 1, x = Bx andDx = 0 imply x = 0. The eigenvectors that
correspond to the zero eigenvalues are “high-pass” signals that satisfyBx = 0.

The eigenvalues ofBDB are singular values of the matrixDB. The analysis that has
been made, and the frame bounds obtained, are related to the singular value decomposition
of DB. But, althoughDB is not Hermitian, its eigenvalues are real and in fact equal to those
of BDB. This can be seen as follows.

Assume thatBDBv = �v. Left multiplication byDB leads to(DB)2v = �DBv, which
shows that� is an eigenvalue ofDB (it corresponds to the eigenvectorDBv). Thus, every
eigenvalue ofBDB is also an eigenvalue ofDB.

Assume now thatDBv = �v. Left multiplication byB leads toBDBv = �Bv, which
is equivalent toBDBBv = �Bv. But this means that� is also an eingenvalue ofBDB, and
thus every eigenvalue ofDB is also an eigenvalue ofBDB. Since the converse has already
been shown, it follows thatBDB, DB (as well as its transposeBD) have the same set of
eigenvalues.

The eigenvectors ofBDB that correspond to its nonzero eigenvalues are generalizations
of the periodic discrete prolate spheroidal sequences (P-DPSS) [8, 21]. We say “general-
ization” only because we are interested in arbitrary setsJ . The P-DPSS correspond to the
contiguous case, in whichJ is a set of consecutive integers moduloN .

The eigenvector that corresponds to�max will be denoted byvmax, whereasvmin will de-
note the eigenvector corresponding to the smallest nonzero eigenvalue�min. Both satisfy
x = Bx, that is, both are band-limited. An example is given in figures 1b and 1c. Note how
the energy ofvmax andvmin is concentrated inside or outside the “window” determined by
D, respectively. We will not explore the orthogonality of the P-DPSS, although that opens
interesting possibilities.
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The quantityE(J; x) can be interpreted as an energy distribution inJ , and

E(J; x) =
kDBxk2
kxk2

is maximum whenx = vmax, and minimum whenx = vmin. This happens for a certain, fixed
J . What happens ifJ varies?

Roughly speaking, whenJ is contiguous and the signals are low-pass, the lower bound
may turn out close to zero and the upper bound close to one. IfJ is more evenly distributed,
this may not be so.

The figures 1a–c and 2a–c refer to two numerical examples. The figures 1a and 2a depict
the nonzero eigenvalues ofBDB for two different setsJ (to keep the figures readable,N
andM were given quite low values but the algorithms can certainly be used for much larger
problems). The eigenvectorsvmax andvmin are shown in figures 1b–c and 2b–c. Bear in mind
thatcard J was kept constant in both examples, and note the effect ofJ on the frame bounds
and the behavior of the eigenvectors. These are important points to understand the numerical
stability of the reconstruction problem — see also [8], and [10,13].

The importance of the prolate spheroidal wave functions—in connection with time-frequency
concentration, uncertainty and other related issues—was stressed by Slepian, Landau and Pol-
lak in an important series of papers, known as “the Bell papers”. See, for example, [24,37,38].

5. The frame algorithm

The frame operator associated with the frameX
4

= fBigi2J is

Sf
4

=
X
i2J

hf; BiiBi:

The basic frame algorithm is the iteration

f (n) = f (n�1) + �S(f � f (n�1));

where� is a real constant, given by

� =
2

� + �
;

and� and� are the frame bounds. The frame algorithm converges geometrically, at a rate
given by �

� � �

� + �

�n

:

This is the best possible rate if� and� are the best possible frame bounds. See, for ex-
ample, [3, 6]. There are other variants and possibilities, but this is the simplest possibility.
Acceleration of this basic iteration is discussed in [17].

We have seen that the frame bounds are� = �min > 0 and� = �max < 1, and this
determines�. It is possible to avoid computing�max and�min, and use estimates for� and
�. However, for missing data problems, computation of the bounds for several possible sets
J , particularly those that are known to occur more often, can provide accurate information
concerning the numerical difficulty of the reconstruction problem.

Recalling thathf; Bii = fi for anyf satisfyingf = Bf , we see that the frame operator
can be computed using

Sf =
X
i2J

fiBi:
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FIGURE 1. First example. (a) The nonzero eigenvalues ofBDB. (b) The eigenvector
vmax of BDB that corresponds to its largest eigenvalue�max. (c) The eigenvector
vmin of BDB that corresponds to its smallest nonzero eigenvalue�min.

The frame operator depends only on the samplesfi with i 2 J . If these samples are known
and all the others are unknown (say, because they were corrupted),Sf is still well defined,
and the frame algorithm can then be used to recover the remaining samples.

The iteration can be written more explicitly as

f (n) = f (n�1) + �
X
j2J

(fj � f (n�1)j )Bj
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FIGURE 2. Second example. (a) The nonzero eigenvalues ofBDB. (b) The eigen-
vectorvmax of BDB that corresponds to its largest eigenvalue�max. (c) The eigen-
vectorvmin of BDB that corresponds to its smallest nonzero eigenvalue�min.

or, in terms of the samples,

f
(n)
i = f

(n�1)
i + �

X
j2J

Bij(fj � f
(n�1)
j ):

Introducing again the matrixD defined by (1), this becomes

f (n) = f (n�1) + �BD(f � f (n�1));
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FIGURE 3. The optimum value of� in the frame algorithm: if1=� is not the average
of �max and�min, eitherA orB will increase.

or, in slightly different form,

f (n) = �BDf + (I � �BD)f (n�1);

whereI is the identity matrix. The matrixI � �BD is called the iteration matrix.
The iteration converges if and only if the spectral radius of the iteration matrix,�(I �

�BD), is below unity. This will be the case if

j1� ��(BD)j < 1;

which shows that, for convergence,

��(BD) < 2:

The optimum value of� is indeed� = (�max + �min)=2 (refer to figure 3).
We will examine some of the connections between the frame algorithm and a few other

methods in the next section.

6. The connections with other methods

6.1. Constrained restoration

The discrete finite frame algorithm can of course be obtained using methods that appear to
bear no direct connection to frames, and that predate the widespread use of frames in signal
processing and engineering applications. The framework for constrained signal restoration
discussed in [35] is one of these methods.

Assume that the signalf is distorted, the mathematical model for the distortion being an
operatorD. The result of applyingD to f is available, butf itself is unknown: the signal
restoration problem is an inverse problem.

Thea priori knowledge concerning the signalf is expressed through one or more con-
straints. In this case, the relevant constraint is band-limiting, that is, one assumes thatf
satisfies an equation such as

fi =
N�1X
j=0

fj
sin[�(2M + 1)(i� j)=N ]

N sin[�(i� j)=N ]
;

in the finite-dimensional vector case, or

f(t) =

Z +1

�1

f(x)
sinw(t� x)

�(t� x)
dx;
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in L2(R). These are examples, but in the general case the equations will still be of the form
f = Bf . The method starts from the identity

f = Bf + �(g �DBf);

whereg = Df = DBf is the distorted (observed) signal, and proceeds by iteration

f (n) = Bf (n�1) + �(g �DBf (n�1)):(6)

The convergence can be established using fixed-point theorems. Other known constraints
(linear or nonlinear) can readily be incorporated in the basic iteration.

In the finite-dimensional setting, the distortionD can be thought of as multiplication by
the matrixD defined by (1). The effect of band-limiting is to constrain the solution to the
subspace of (say) low-pass signals, solutions tox = Bx, whereB is the circulant matrix used
before.

To compare the iteration (6) with the frame algorithm, note that applyingB to both sides
of (6) leads to

Bf (n) = Bf (n�1) + �(Bg � BDBf (n�1)):

But g = BDf , and so this turns out to be equivalent to

f (n) = f (n�1) + �BD(f � f (n�1));

which is the frame algorithm.

6.2. The Papoulis-Gerchberg iteration

Letf = Bf and assume that some of the samples off are known. Our task is to determine the
remaining samples. Assume that the known samples arefi, i 2 J . With the help of the matrix
D defined by (1), the given data can be writtenDf . As we have seen before, the Papoulis-
Gerchberg iteration, originally introduced [15, 30, 31] as an extrapolation / superresolution
method forL2(R) signals, can be used to approach this problem. The algorithm consists
of two steps, one of which is band-limiting (application of the operatorB). The other step
enforces the time-domain knowledge, that is, it resets the known part of the signal to its true
value.

In the finite-dimensional setting [8] band-limiting is multiplication by the circulant matrix
B. Equation 3 shows how to insert the values of the known samples in a given vectorx:

Px
4

= (I �D)x+Df

Given the result of iterationn � 1, f (n�1), the Papoulis-Gerchberg iteration produces a new
approximationf (n) to f according to the rulef (n) = PBf (n�1), that is,

f (n) = (I �D)Bf (n�1) +Df:

Reversing the order of the two operations, that is, definingf (n) by f (n) = BPf (n�1), or
applying the band-limiting operator to both sides of the previous equation, leads to

f (n) = B(I �D)f (n�1) +BDf:

This is equivalent to

f (n) = Bf (n�1) +BD(f � f (n�1)):

It is possible to replaceBf (n�1) by f (n�1), since the result of the iterations will be band-
limited, if the initial vector was itself band-limited. Taking that step leads to the frame algo-
rithm, with� = 1.
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6.3. Alternating projections and POCS

The two operations upon which the Papoulis-Gerchberg method rests are projections onto
convex sets. Band-limiting is a projection, andB is a projection matrix. Note thatB2 = B.
In this case, the convex set is just the subspace of band-limited signals.

The operatorP defined by (3) is also a projection. Note thatPf = f , and thatP 2 = P .
In this case, the convex set is the set of all signalsx whose samplesxi, for i 2 J , agree with
the given datafi, i 2 J .

Hence, the Papoulis-Gerchberg iteration is an alternating projection method of the type
discussed in [45]. This, in turn, is a special case of the POCS method [36,46]. This opens new
possibilities for incorporating nonlinear constraints in the problem (maximum or minimum
amplitudes, positive or nonnegative character of the solution, and so on).

7. Comments and conclusion

We discussed a number of problems in signal reconstruction, error-control coding, fault-
tolerant computing, and spectrum analysis. After examining the connections between these
problems, we developed a tutorial exposition of frames in connection with the missing data
problem. The frame bounds and the extremal signals of the restoration problem were re-
lated to the eigenvalues and eigenvectors of certain matrices. For extrapolation problems, the
eigenvectors reduce to the periodic discrete prolate spheroidal wave sequences.

The finite-dimensional theory, despite its mathematical simplicity, is extremely useful for
practical digital signal processing applications, which invariably involve a finite number of
samples. It is also enlightening, because it exhibits many of the algebraic aspects that subsist
in the more abstract and mathematically interesting settings, without the analytic subtleties
that occur, for example, when dealing with limit processes and their interchange.

The frame algorithm is capable of acceptably good performance under certain conditions,
but the convergence rate falls to very low values whenever�=� � 1. These problems have
been recognized, and there are several well understood ways of circumventing them, some of
which are explored in the references that have already been given.

Among the possible solutions, we point out Chebyshev acceleration and conjugate gra-
dient acceleration [17], and the adaptive weights method. See, for example, [7], which dis-
cusses several analytical and numerical aspects of the sampling problem. Another possibility
is to interchange the time and frequency domains and try to solve for the DFT off instead
of solving for f itself (using a frame based on the columns of the matrixT , introduced in
section 4.3, instead of a frame of column vectors ofB). Yet another possibility is to refor-
mulate the problem as a nonsingular set of linear equations. This is proposed, for example,
in [18, 39] and [9]. The equations may then be solved using any of the standard methods,
either iterative, noniterative, or semi-iterative [16, 40, 47]. Also in this case there is a choice,
between the time-domain and the frequency-domain, as explained in [12]. The improvements
that can be obtained using these techniques are substantial, often leading to performance that
exceeds by orders of magnitude the simplest iterative methods.
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