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Abstract In this chapter, we outline the statistical procedures that can
be employed for the detection of unexploded ordnance (UXO). Phenomeno-
logical modeling is first developed to relate the collected data to a sensor’s
feature parameters, which in turn allow for physics-based signal processing.
Starting with the Bayesian framework, we introduce minimax and robust de-
tection that do not require prior probabilities and distributional information
on the measurement uncertainty, respectively. Nonparametric tests that per-
form well for broad classes of distributions are also presented. Finally, the
generalized likelihood ratio test is described as a joint estimation-detection
method which first estimates the feature parameters and then tests for the
presence-absence of the UXO.
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1.1 Introduction

Unexploded ordnance (UXO) refers to explosive devices that are buried be-
low ground. Magnetometers, electromagnetic induction (EMI) and radar are
typically used for sensing UXO. Excavation operations are risky and costly,
and therefore false alarms should not exceed some acceptable level.

Detection of UXO involves several stages. Data are collected by sensors,
preferably several distinct ones. Model parameters are extracted and refined
in which information from one device may help constrain the parameter space
of another sensor to minimize uncertainties. One example is the location
estimate supplied by a magnetometer serving as a constraint when analyzing
the EMI data. The next step is the detection of UXO; that is, distinguishing
between UXO and non-UXO objects based on statistical tests performed on
the measured parameter values. This may be followed by classification of the
UXO type.

In this chapter, we concentrate on various detection techniques that pri-
marily differ in the modeling assumptions. We characterize the problem in
the form of two hypotheses described as

H1 : UXO present,

H0 : UXO absent, or non−UXO present.

We will assume that the measurement uncertainties are represented by the
multivariate Gaussian distribution. We adopt this distribution because of
its maximum entropy property and the mathematical convenience it brings
along, rather than being justified by empirical observation. However, we will
also show methodologies that accommodate variations in the distributional
form.

The simple, approximate magnetic-dipole model uses the magnetometer
field measurements to determine the UXO depth below ground and the
magnetic-dipole orientation [1,9]. The EMI response can be modeled by gen-
eralizing the magnetometer model through a tensor that ties the excitation
magnetic field and the magnetic dipole moment. Assigning unique magnetic
dipoles to distinct components of the same UXO and providing more informa-
tion, the EMI models work with more parameters such as the ordnance’s cen-
ter location constrained by the magnetometer data, UXO orientation (char-
acterized by a unitary transformation matrix on the magnetization tensor),
magnetization induced by ferrous elements, and the EMI resonant frequen-
cies [15]. A multisensor towed array system of magnetometers and EMI sen-
sors is shown to perform with a detection probability greater than 0.95 in [9].
The detection of deeply buried UXO by means of a magnetometer equipped
with cone penetrometer technology is investigated in [14].

Ground-penetrating radar (GPR) in conjunction with synthetic aperture
radar (SAR) processing can be used from airborne [3] or ground platforms
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for UXO location identification. In [4], a GPR in the 50-500 MHz range is
deployed along with magnetometers. The SAR processing produces three-
dimensional images of possible UXO locations. Further data analysis is
needed to decide on the actual UXO presence [2]. For the application of
a directional borehole radar, see [11].

1.2 Detection

Let x denote the feature vector whose elements are the magnetometer or EMI
model parameters. The signal measurements received from the sensor is the
n-dimensional vector v, which is a function of x. Extraction of x from v based
on a phenomenological model is known as inversion. As an example, consider
the EMI dipole model [15], where H′ denotes the excitation magnetic field and
M is the magnetization tensor. The magnetic dipole moment is m = M ·H′.
Assuming that UXO is aligned along the z-axis,

M(ω) = zT z

(
mz(0) +

∑
k

ωmzk

ω − jωzk

)

+(xT x + yT y)

(
mp(0) +

∑
k

ωmpk

ω − jωpk

)
(1.1)

where x,y, z are orthonormal vectors and mz(0),mp(0) stand for the mag-
netization induced by ferrous objects. Keeping only the first terms in each
summation in (1.1) is sufficient to have a physics-based signal model [1], where
ωz1 and ωp1 can be used as features in the detection set-up because the imag-
inary resonant frequencies are functions of the UXO material properties and
size.

1.2.1 Bayesian Framework

Let πi, i = 0, 1, be the a priori probability of Hi, i = 0, 1, with π0 + π1 =
1. The probability π1 represents the prior knowledge, expectation or guess
regarding the likelihood of encountering an actual UXO. Thus, the higher π1,
the greater the chance of running into an UXO at the area of exploration.

Suppose that we can devise a cost coefficient cij , i, j = 0, 1 which represents
the cost of deciding on Hi when Hj is true. Assuming that c11 < c01, the
expected Bayesian risk associated with the choice between the presence and
absence of a UXO is minimized by the decision rule δB :
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δB =
{

1 if L(v) ≥ t,
0 if L(v) < t

where the likelihood ratio (LR) and the threshold are respectively defined as

L(v) =
f1(v)
f0(v)

,

t =
(c10 − c00)π0

(c01 − c11)π1

with fi(v) = f(v|Hi), i = 0, 1.
Determining the value of π1 with good accuracy is critical for the detec-

tion performance when the Bayesian framework in (1.2.1) is employed. If the
estimated π1 value is overshot, the test will yield more false alarms than nec-
essary. Similarly, an unrealistically low π1 may result in excessive number of
undetected UXOs with possibly catastrophic consequences. Therefore, it is
desirable to work with detectors that do not require the priors, or that are
insensitive to deviations from true values.

1.2.2 Minimax Solution

Suppose that the prior probabilities (π0, π1) are unknown and they cannot
be estimated with sufficient precision. A conservative approach to detector
design would be to ensure good performance under the “least favorable”
conditions, which is characterized by the priors that maximize the Bayesian
cost. Such a worst-case design guarantees a minimum performance level in
the event of parametric uncertainty: for any other (π0, π1) pair, the detector
will do even better.

Let R(δ|Hi) denote the Bayesian risk associated with the decision rule δ
given that hypothesis Hi, i = 0, 1, is true. For the unknown prior π0, the
expected risk is

R(δ, π0) = R(δ|H0)π0 + R(δ|H1)(1− π0).

In accordance with the Bayesian paradigm, the goal now is to find a decision
rule-least favorable prior pair (δM , π0M ) which solves the minimax problem:

(δM , π0M ) = arg min
δ

max
π0M∈(0,1)

R(δ, π0). (1.2)

The formulation in (1.2) can be viewed as a competitive game between the
engineer and nature. While the engineer attempts to minimize the cost by
designing the best detector, nature tries to maximize the penalty involved
by selecting the least favorable prior. From the engineer’s perspective, nature
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wants to maximize the minimum cost induced by his/her δ decision. In con-
trast, the engineer’s objective is to minimize the maximum cost that occurs
from the (π0, π1) selection. The pair (δM , π0M ) exhibits a so-called saddle
point behavior described by

R(δM , π0) ≤ R(δM , π0M ) ≤ R(δ, π0M )

for all δ and π0.
The saddle point property stipulates that the following condition is satis-

fied for any R(δ, π0).

R(δM , π0M ) = max
π0∈(0,1)

min
δ

R(δ, π0) = min
δ

max
π0∈(0,1)

R(δ, π0). (1.3)

The interpretation of (1.3) is simple and useful: If (δM , π0M ) is a saddle point,
then it solves the minimax problem in (1.2), and vice versa. Moreover, the
minimax solution is the same as the maximin solution, and one can opt for
one or the other depending on their relative ease and complexity.

1.2.3 Neyman-Pearson Framework

In addition to the lack of reliable information about the prior probabilities, it
may not be possible to formulate meaningful cost coefficients as required by
the Bayesian set-up. The two error types may have asymmetrical penalties
involved. Specifically, let

eI(δ) = P{H1|H0 is true}

which is known as the false alarm probability, or type I error in statistics.
Similarly, the miss probability, or type II error is defined as

eII(δ) = P{H0|H1 is true}.

It is clear that a false alarm event merely triggers a costly UXO removal
operation whereas a miss leaves the UXO undetected. It is impossible to
minimize eI and eII simultaneously. Recognizing that minimizing misses is far
more important than avoiding false alarms leads to the following constraint
optimization problem:

Minimize eII(δ) subject to eI(δ) ≤ α. (1.4)

Note that without the bound on the false alarm probability, one could
achieve eII(δ) = 0 by simply having δ = 1 at all times. Unfortunately, this is
an infeasible solution because it requires infinite time and resource budgets.
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The solution of (1.4), which follows the construction of the appropriate
Lagrangian and the application of Kuhn-Tucker conditions, is stated in the
Neyman-Pearson Lemma.

δNP =

1 if L(v) > λ(α),
r(α) if L(v) = λ(α),
0 if L(v) < λ(α),

where the threshold λ(α) and the randomization constant r(α) ∈ [0, 1] are
such that ∫

V1

f0(v)dv + r(α)
∫
V2

f0(v)dv = λ(α),

and

V1 =
{

v :
f1(v)
f0(v)

> λ(α)
}

,

V2 =
{

v :
f1(v)
f0(v)

= λ(α)
}

.

Once again, the optimal detector takes the form of a likelihood ratio test but
in Neyman-Pearson set-up, the threshold is determined by the false alarm rate
α, instead of priors or cost coefficients. If the density functions fi(v), i = 0, 1,
are continuous everywhere, then randomization is not necessary and r(α) can
be set to unity.

1.3 Gaussian Uncertainty

Suppose that the measurement uncertainties are represented by the multi-
variate Gaussian random variable so that

fi(v) =
1

(2π)n/2|Σi|1/2
exp

{
−1

2
(v − µi)T Σ−1

i (v − µi)
}

where mi and Σi, i = 0, 1, are respectively the mean vector and the covariance
matrix under Hi, i = 0, 1. The natural logarithm of the likelihood ratio takes
the form

L′(v) = loge L(v) = (v−m0)T Σ−1
0 (v−m0)−(v−m1)T Σ−1

1 (v−m1). (1.5)

The degree of correlation between successive measurements is hard to deter-
mine, and as an approximation and to keep the design simple, one can assume
that Σi = diag{σ2

i1, σ
2
i2, . . . , σ

2
in}, i = 0, 1. Letting mi = [mi1 · · · min]T and

vi = [vi1 · · · vin]T , (1.5) becomes
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L′(v) =
n∑

k=1

(v0k −m0k)2

σ2
0k

−
n∑

k=1

(v1k −m1k)2

σ2
1k

The optimal Bayesian test is

δB,G =
{

1 if L′(v) ≥ t′,
0 if L′(v) < t′

where

t′ = loge

(c10 − c00)π0

(c01 − c11)π1
.

If there is sufficient evidence that the underlying uncertainty cannot be
adequately described by the Gaussian distribution, then it is possible to re-
sort to robust formulations that ensure good performance even if there are
deviations from the nominally assumed probability distribution. Let F0 and
F1 respectively denote two disjoint classes of multivariate probability density
functions (PDFs) that represent H0 and H1. Following a similar game as in
the minimax construction, we then seek to find a pair (δ∗, f∗1 (v)), where δ∗

is an admissible decision rule and f∗1 (v) ∈ F1, such that

eII(δ, f∗1 ) ≤ eII(δ∗, f∗1 ) ≤ eII(δ∗, f1),∀δ ∈ D,∀f1 ∈ F1, (1.6)

and
eI(δ∗, f0) ≤ α, ∀f0 ∈ F0, (1.7)

where D is the class of admissible decision rules and α is a prespecified false
alarm rate. If there exists a δ∗ that satisfies (1.6) and (1.7), then it is referred
to as a robust rule. The pair of density functions, f∗0 and f∗1 that satisfy (1.6)
and (1.7) for the rule δ∗ are called least favorable in F0 ∪ F1. Moreover, δ∗

is clearly a Neyman-Pearson test at (f∗0 , f∗1 ) and α.
An interesting special case where F0 and F1 represent the following classes

of stationary and memoryless processes has been extensively studied by Hu-
ber [6].

F0 = {f(v) = (1− ε0)f0(v) + ε0h(v), v ∈ R, h ∈ H}, (1.8)

F1 = {f(v) = (1− ε1)f1(v) + ε1h(v), v ∈ R, h ∈ H} (1.9)

where R is the real line, H is the class of all density functions, ε0, ε1 ∈ (0, 1)
and v is some element of the feature vector v [7]. The robust detector under
the classes of distributions defined in (1.8) and (1.9) is the likelihood ratio
test designed for the corresponding least favorable f∗0 , f∗1 , which trims data
that exceed certain threshold values, thereby eliminating the outliers.
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1.4 Nonparametric Detection

The measurement and modeling uncertainty is specified by a relatively re-
stricted family of distributions in (1.8) and (1.9). A detector that performs
well for a broader class arises from the nonparametric procedures. Let F−θ

represent the class of stationary and memoryless discrete-time processes with
common mean at −θ. Each member of the class is denoted by the first-order
probability density function f−θ. The hypotheses H1 and H0 are described by
Fθ and F−θ, respectively. A decision rule consists of the triplet (T (v), λ, r)
where T (v) is the corresponding test function, α is the preset false alarm rate
and r is the randomization constant. The rule or test (T (v), λ, r) is nonpara-
metric in (Fθ,F−θ) if and only if it induces the same false alarm probability
for all f−θ ∈ F−θ [7].

Let F denote the class of distributions obtained from either Fθ or F−θ

when the mean is set to zero for all members. For some f ∈ F , suppose that
fθ is the PDF induced by f when its mean is changed from zero to θ. Let
n(α, β, Tfθ

) be the number of data required by a Neyman-Pearson rule to
attain the detection probability (also known as the power of the test) β while
satisfying the false alarm constraint α when testing fθ against f−θ. Likewise,
let n(α, β, T, fθ, f−θ) be the sample size needed by the nonparametric test of
fθ versus f−θ to achieve the power β with false alarm α. The efficacy, EFF,
and the asymptotic relative efficiency, ARE, are defined as

EFF = lim
n→∞

(
∂
∂θE[T (v)|fθ]

∣∣
θ=0

)2
n · var(T (v)|fθ)

,

and

ARE = lim
θ→0

n(α, β, Tfθ
)

n(α, β, T, fθ, f−θ)
.

Efficacy indicates the asymptotic discrimination ability of the test when the
hypotheses are close to each other. Asymptotic relative efficiency measures
the additional sample size needed by the nonparametric test to yield the
same power as the optimal Neyman-Pearson rule when the two hypotheses
are asymptotically close to each other.

1.4.1 Sign Test

The sign test was originally introduced as an ad hoc formalization but it also
evolves as a limiting case of the robust test for the classes in (1.8) and (1.9).
The associated test function is
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T (v) =
1
n

n∑
i=1

sgn vi

where

sgn vi =
{

1 if vi > 0,
0 if vi ≤ 0.

The sign test is nonparametric in (Fθ,F−θ) for any n, and for fθ and f−θ

generated by Gaussian PDF with variance σ2, its efficacy and asymptotic
relative efficiency are EFF = 8/πσ4 and ARE = 2/π [7]. Thus, the sign
test requires about 57% more samples to reach the same performance level
as the Gaussian-optimal Neyman-Pearson rule (as θ → 0), but the latter
experiences performance degradation when the Gaussian distribution is not
actually a valid uncertainty model.

1.4.2 Optimal Rank Test

The rank tests first order the measurements {v1, . . . , vn} from smallest to
the largest and then take the signs of the ordered data. The new vector
z = [z1 · · · zn]T of the signs, where

zi =
{

1 if the ith ranked datum in v has nonnegative sign,
0 if the ith ranked datum in v has negative sign,

is called the rank vector.
Given θ > 0 and some f ∈ F , the optimal-at-f rank test is

δO =


1 if Kfθ

(z)

Kf−θ
(z) > λ,

r if Kfθ
(z)

Kf−θ
(z) = λ,

0 if Kfθ
(z)

Kf−θ
(z) < λ

where

Kfθ
(z) = n!

∫
· · ·
∫ n∏

i=1

f(vi − θzi)dv,

Kf−θ
(z) = Kfθ

(−z),

and λ and r satisfy

P

{
Kfθ

(z)
Kf−θ

(z)
> λ|f−θ

}
+ r · P

{
Kfθ

(z)
Kf−θ

(z)
= λ|f−θ

}
= α.
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For the optimal-at-f rank test, ARE = 1, and the efficacy at f is the
Fisher information, i.e.,

EFF =
∫
R

[f ′(x)]2

f(x)
dx

so long as f ∈ F possesses a Taylor series expansion [7].

1.4.3 Wilcoxon Rank Test

The Wilcoxon rank test [12] is as follows.

δW =

1 if
∑n

i=1 izi > λ,
r if

∑n
i=1 izi = λ,

0 if
∑n

i=1 izi < λ,

with λ and r such that

sup
f−θ∈F−θ

(
P

{
n∑

i=1

izi > λ|f−θ

}
+ r · P

{
n∑

i=1

izi = λ|f−θ

})
= α.

While the optimal rank test is the Neyman-Pearson test for the rank vector
z extracted from a particular f ∈ F , the Wilcoxon test is designed for the
entire classes (Fθ,F−θ). For Gaussian PDF with variance σ2, the Wilcoxon
rank test has ARE = 3/π < 1 and EFF = 6/πσ2 [7].

The tests described in this section are nonparametric in both (Fθ,F−θ)
and (F2θ,F), which ensures broader applicability.

1.5 Generalized Likelihood Ratio Test

So far we have assumed that model parameters were known. In practice,
these have to be estimated beforehand or simultaneously with the detection
procedure. In the latter case, the generalized likelihood ratio test (GLRT)
offers a joint estimation and detection methodology to solve the composite
hypotheses that are represented by the corresponding density functions as
below.

H1 : f1(v|x),x ∈ X1,

H0 : f0(v|x),x ∈ X0.
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Suppose that x̂i is the maximum likelihood estimate of x under Hi, i = 0, 1,
i.e., x̂i = arg maxx∈Xi

. Then, the generalized likelihood ratio (GLR) is

LGLR(v) =
f1(v|x̂1)
f0(v|x̂0)

.

If the null hypothesis H0 is the absence of UXO, then x = x0 with no need
for estimation. The GLRT is

δGLRT =
{

1 if LGLR(v) ≥ λ(α),
0 if LGLR(v) < λ(α)

where λ(α) is such that

max
x∈X0

eI(δGLRT,x) = α

with the type I error now defined as

eI(δGLRT,x) = P{LGLR(v) > λ(α)|x,H0 is true} = α.

Model inversion to estimate x from the measurements is sensitive to errors in
sensor positions, and Bayesian methods employing the GLRT that improve
the detection performance are proposed in [10].

1.6 Conclusion

We have provided a brief summary of the statistical tools that are available
for the detection of UXO. The application of the tests require accurate models
that relate various UXO parameters to observed data, as well as a good dis-
tributional description for the uncertainties in measurements and modeling.
Performance can be assessed by plotting eII versus eI, the so-called receiver
operating characteristic (ROC). The ROC curve gives the detection proba-
bility for a given false alarm rate. To combine detection and ordnance classi-
fication, it is possible to set up a multiple hypothesis testing problem where
each hypothesis Hi, i 6= 0, corresponds to a possible UXO type with the asso-
ciated feature vector, and H0 still represents the absence of UXO. The need
for accurate representation of measurement uncertainties can be alleviated
by using model-free approaches such as the support vector machine which
relies on preprocessing with training data [15]. For multiple closely spaced
UXO parts, blind source separation methods such as independent component
analysis can precede the UXO detector [5]. Deploying multiple sensors with
distinct distances from the buried UXO can deliver significant classification
performance improvement as demonstrated in [13]. The reader is referred to
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the bibliography and the references therein for further exploration into UXO
detection.
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