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1. Introduction
This paper describes some key mathematical ideas in the theory of

radar from a group theoretic perspective. The intention is to elucidate
how radar theory motivates interesting ideas in representation theory
and, conversely, how representation theory affords a better understand-
ing of the inherent limitations of radar. Although most of the results
presented here can be found in (Wilcox, 1991) and (Miller, 1991), there
are significant differences in the selection and presentation of material.
Moreover, compared with (Wilcox, 1991), (Miller, 1991) and (Moran,
2001), greater emphasis is placed here on the group theoretic approach,
and in particular, its ability to arrive quickly and succinctly at basic
results about radar.

Central to radar theory is the ambiguity function. Specifically, corre-
sponding to any waveform w(t) is a two dimensional function Aw(t, f),
called the ambiguity function, which measures the ability of that par-
ticular waveform to allow the radar system to estimate accurately the
location and velocity of the target. Some waveforms perform better
than others, and it is the challenge of radar engineers to design wave-
forms with desirable ambiguity functions while simultaneously meeting
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the many other design criteria which impose constraints on the set of
feasible waveforms.

A particularly elegant way of studying the ambiguity function is to
write it in the form Aw(t, f) = 〈w, ρ(t,f)w〉L2(R) where ρ(t,f) is an op-
erator acting on L2(R). In fact, ρ(t,f) turns out to be a very special
type of operator; it is an irreducible unitary multiplier representation
of the additive group R2. It is here that group representation theory
enters the picture. Functions A : G → C of the form A(g) = 〈w, ρgv〉
over some group G, where ρg is a representation of G, are sometimes
known as special functions in the literature. Importantly, most if not all
interesting facts about special functions can be deduced from a study of
the group representation ρg.

After defining the ambiguity function in Section 2, a brief introduc-
tion to representation theory is presented in Section 3. A feature of
this presentation is that multiplier representations, along with their con-
nections to ordinary representations and projective representations, are
highlighted. Whereas it is customary to study the ambiguity function
via the representation theory of the Heisenberg group, this paper studies
instead the relevant multiplier representation of R2. Although both ap-
proaches are equivalent, the authors believe the multiplier representation
approach is the more natural.

Section 4 derives fundamental facts about the multiplier represen-
tation theory of R2 and how it relates to the ambiguity function. A
somewhat novel contribution is a generalised version of Moyal’s identity
(Theorem 2), whose proof has a more direct and intuitive flavour than
that of previous proofs of Moyal’s identity. Also covered in Section 4
are the various ways of realising the representation ρ(t,f) on different
Hilbert spaces. These representations are equivalent to each other, but
depending on the problem at hand, some spaces can be easier to work
in than others.

The results in Section 4 are applied in Section 5 to answer several
questions about ambiguity functions. A generating function approach
is provided for finding explicit formulae for the ambiguity functions of
Hermites. It is proved that the Hermite waveforms have the distinguish-
ing property of having rotationally symmetric ambiguity functions. The
potential benefits of hypothetically being able to use multiple waveforms
are touched upon too.

Finally, Section 6 concludes by stating that the ambiguity function
studied in this paper is the narrow band ambiguity function and is an
approximation, albeit a good one in many situations, to what is known
as the wide band ambiguity function. It is explained that the latter also
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can be studied from a group theoretic perspective, but that such a study
is not undertaken here.

2. How a Radar Works
At the simplest level a radar transmits a waveform w(t) which is then

reflected from the scene. In fact, the waveform is modulated onto (that
is, multiplied by) a much higher (carrier) frequency sinusoid.

The reflection is picked up at the radar and processed to produce a
picture of the scene. We assume for the purposes of this discussion that
the radar is looking entirely in one direction. We can think of the scene
for the moment as a collection of scatterers at various distances rk and
moving with velocities vk relative to the radar. We measure distances
in units of time — the time needed for light to travel that distance —
and we measure the velocities in multiples of the speed of light. This
prevents the proliferation of c’s (the speed of light) in the formulae. Thus
the scene can be regarded as a linear combination

scene(t) =
∑

k

ck δ(t − rk, v − vk) (1)

where δ(t, v) is the “delta” function — that is a point mass — at the
origin of the “range-Doppler” (t, v) plane. The term ck is the (complex)
reflectivity of the scatterer.

Before proceeding further we remark that because radar (unlike con-
ventional light based viewing systems) is able to keep track of the phase
of the signal, or at least phase changes in it, processing in radar is done
in the complex domain. A complex waveform can be modulated onto
a carrier by using a phase shift to represent the argument of the wave-
form. The presence of the high frequency carrier and a stable oscillator
producing the sinusoid means that the radar can detect phase shifts and
is capable of producing a reasonably good approximation to the Hilbert
transform of the return. As a result, radar engineers work in the com-
plex domain and assume that their signals are complex, the argument
corresponding to a phase shift in the carrier.

The signal returned to the receiver — and for simplicity we assume
that the transmitter and receiver are collocated — is then the convolu-
tion of the transmit signal and the scene. That is,

ret(t) =
∑

k

ckw(t − 2rk)e4πivkfct, (2)

where fc is the carrier frequency. The 2’s have appeared because we
are considering the round-trip of the signal rather than the one-way
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trip. The return is then (after stripping off the high frequency carrier)
correlated with another (or the same) waveform v(t). The result is

proc(t) =
∫

ret(τ)v(τ − t) dτ

=
∑

k

ck

∫
w(τ − 2rk)e4πivkfcτv(τ − t) dτ,

(3)

which is a linear combination over the individual scatterers, as one would
expect. The expression∫

w(τ − 2r)e4πivfcτv(τ − t) dτ (4)

tells all about the way in which the radar behaves. Once we know this
function and the scene, we can reconstruct the return. Of course this is a
gross simplification but for the purposes of this paper it will be enough.
It is important to mention that the key issue for the radar engineer is
to do the inverse problem: given the return, how to extract the scene.

Briefly, we mention that there is scope for extraction of information
from multiple waveforms rather than the single waveforms discussed
here. Even this situation can be treated as that of one very long pulse
and the expression (4) continues to be relevant.

By a change of variable and a renormalization of the units of mea-
surement of the velocity, equation (4) becomes

Aw,v(t, f) =
∫

w(τ)e2πifτv(τ − t) dτ. (5)

This is the radar ambiguity function, or at least one form of it, and is
the focus of the study of this paper.

At this point we impose some mathematical constraints on the situa-
tion. The functions w and v are always assumed to be “finite energy”
signals; that is, they belong to L2(R). It is clear then that the integrand
is integrable and indeed, by the Cauchy-Schwarz Inequality, that

|Aw,v(t, f)| ≤ ‖w‖L2(R)‖v‖L2(R), (t, f) ∈ R2, (6)

for all v,w ∈ L2(R). The expression

ρ(t,f)(v)(τ) = e−2πifτv(τ − t) (7)

is clearly significant in the theory of the ambiguity function. We note
that ρ(t,f) is a unitary operator in L2(R), and that

Aw,v(t, f) =
〈
w, ρ(t,f)v

〉
L2(R)

. (8)
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Moreover

ρ(t1,f1)ρ(t2,f2)(v)(τ) = e−2πif1τρ(t2,f2)(v)(τ − t1)

= e−2πif1τe−2πif2(τ−t1)(v)(τ − t1 − t2)

= e2πif2t1ρ(t1+t2,f1+f2)(v)(τ),

(9)

that is,
ρ(t1,f1)ρ(t2,f2) = e2πif2t1ρ(t1+t2,f1+f2). (10)

This makes ρ a multiplier representation of R2 with multiplier

σ((t1, f1), (t2, f2)) = e−2πit1f2 (11)

because
ρ(t1+t2,f1+f2) = σ((t1, f1), (t2, f2)) ρ(t1,f1)ρ(t2,f2). (12)

Our aim is to make sense of these ideas and examine their consequences.

3. Representations
Since representations, or at least multiplier representations, play a

role in the radar ambiguity function, we spend some time discussing
them; first ordinary representations and then multiplier representations.
The abstract theory of representations of groups goes as follows. Let
G be a locally compact group. Such a group has a Haar measure mG,
which is invariant under left translation:

∀h ∈ G,

∫
G

F (hg) dmG(g) =
∫

G
F (g) dmG(g), (13)

for any integrable function F on G.
A (unitary) representation of G is a continuous homomorphism

π : G → U(H) (14)

into the unitary group of a Hilbert space H. It will be convenient to
write the image of g ∈ G under this map as πg instead of the more
conventional π(g). Continuity means, in this case, that the maps

g → 〈ζ, πgξ〉 (15)

are continuous for all ζ, ξ ∈ H. The theory of unitary representations
of locally compact groups, and of Lie groups in particular, is extensive.
Here we focus on those (small) parts we need for the development of the
theory of the radar ambiguity function.
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Two representations π and θ of G on the Hilbert spaces H and K are
equivalent if there is an isometry V : H → K such that

V πg = θgV (g ∈ G). (16)

In pictorial form, π and θ are equivalent if there exists a V such that

V V

HH

KK

θg

πg

commutes. Without the isometry constraint, the operator V is called
an intertwining operator of π with θ. If every intertwining operator of θ
with itself is a scalar multiple of the identity, θ is said to be irreducible.
This is equivalent to there being no non-trivial subspace of K invariant
under the action of all of the operators θg (g ∈ G). The connection
between invariant subspaces and intertwining operators (via the spectral
theorem) which makes these two definitions equivalent is called Schur’s
Lemma.

When the group G is compact every representation is a direct sum
of irreducible representations and this decomposition is unique up to
equivalence of representations. This is the content of the Peter-Weyl
Theorem. Unfortunately, the groups of special interest in radar are not
compact and it is not true for these groups that every representation
is a direct sum of irreducibles. In any case, every representation is
a direct integral of irreducibles; see (Mackey, 1976). In general this
decomposition is not unique but, for the groups of major interest to us,
uniqueness (almost everywhere) holds.

As we have already seen, it will be necessary to consider multiplier
representations as well as ordinary representations. For this, we need
a multiplier. This is a Borel map σ : G × G → T, where T is the
group under multiplication of complex numbers of absolute value 1, that
satisfies the cocycle condition

σ(g1, g2)σ(g1g2, g3) = σ(g1, g2g3)σ(g2, g3) (g1, g2, g3 ∈ G), (17)

to which we add the normalization σ(1, 1) = 1. Then a multiplier rep-
resentation is a map ρ : G → U(H) that satisfies

ρg1g2 = σ(g1, g2)ρg1ρg2 (g1, g2 ∈ G), (18)
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and that is measurable in the same sense that an ordinary representa-
tion is continuous. We remark that while the multipliers and multiplier
representations considered in this paper are all continuous, it is impor-
tant for the development of the general theory to permit multipliers
and representations that are only Borel. The definitions of equivalence
and irreducibility for multiplier representations are unchanged from the
ordinary representation case. The projective unitary group is

P(H) = U(H)/{cI : c ∈ T}. (19)

Multiplier representations give rise to projective representations (that is,
continuous homomorphisms from G to P(H)) via composition with the
quotient map p : U(H) → P(H). Conversely, since there is a Borel cross
section η : P(H) → U(H) (that is, a right inverse of p) any projective rep-
resentation gives rise to a multiplier representation. We note, however,
that there are many such cross sections, and so there are many multi-
plier representations giving rise to the same projective representation —
indeed different multipliers are involved in general.

The multipliers on a group G form an abelian group under multipli-
cation. A multiplier (or cocycle) σ is a coboundary if there is a Borel
map φ : G → T such that

σ(g1, g2) =
φ(g1)φ(g2)

φ(g1g2)
. (20)

Coboundaries form a subgroup of the group of cocycles of G and two
elements of the same coset are said to be cohomologous. Cohomologous
multipliers have essentially the same representation theory. If σ1 and σ2

are cohomologous:

σ1(g1, g2) =
φ(g1)φ(g2)

φ(g1g2)
σ2(g1, g2), (21)

and ρ is a σ1-representation, then a simple check reveals that

g → φ(g)ρg (22)

is a σ2-representation.
As we have stated, a projective representation κ : G → P(H) lifts to

different multiplier representations using different Borel cross-sections
of the quotient map p. However different lifts just produce cohomol-
ogous multipliers. If they are then made representations for the same
multiplier using the trick described in equation (22), then the two repre-
sentations are equivalent. Thus the theory of multiplier representations
is essentially the theory of projective representations.
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One final issue on the general theory of representations needs to
be addressed before we return to radar theory. This is that projec-
tive/multiplier representations are really ordinary representations but
for a different group. Before justifying that we point out that if pro-
jective representations did not exist (as the radar ambiguity function
demonstrates they should), then we would have to invent them. There
is a remarkable and beautiful theory for constructing representations
of groups called “the Mackey analysis”; see (Mackey, 1976). To give a
detailed exposition of this would take us well beyond the focus of this
paper. We merely mention that, in order to use the Mackey analysis to
construct ordinary representations of a group G, it is necessary to con-
sider projective representations of subgroups of G. On the other hand,
if we start trying to construct projective representations of G using the
extension of the Mackey analysis to the projective case, then we still
only have to consider projective representations of subgroups. Projec-
tive representations form a natural completion of the class of ordinary
representations.

Now let ρ be a σ-representation of a group G. We show how to make
ρ into an ordinary representation of a larger group. We can form a new
group G̃ whose elements are pairs [g, z], where g ∈ G and z ∈ T, and
with multiplication given by

[g1, z1][g2, z2] = [g1g2, z1z2σ(g1, g2)]. (23)

The identity element is (1G, 1) and the inverse is given by

[g, z]−1 = [g−1, zσ(g, g−1)]. (24)

Note that a consequence of the normalization σ(1, 1) = 1 is that

σ(g, 1) = σ(1, g) = 1 (g ∈ G). (25)

The group G̃ is called a central extension of the group G by the circle
group T. By this we mean that T (as the subgroup {[0, z] : z ∈ T})
is a subgroup of the centre of G̃ and the quotient G̃/T is isomorphic
to G. Central extensions are classified by the group of cocycles modulo
coboundaries. For details we refer the reader to (Maclane, 1975).

Thus, for any σ-representation ρ of G,

π([g, z]) = zρg (26)

is an ordinary representation of G̃. There is an exact correspondence
between the σ-representation theory of G and the ordinary represen-
tation theory of those representations of G̃ that restrict on the central
subgroup T to be the homomorphism [g, z] → zI.
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4. Representations and Radar
We return to the radar ambiguity function and how representation

theory impinges on it. As we have seen in Section 2, the radar ambiguity
function is expressible in the form

Aw,v(t, f) =
〈
w, ρ(t,f)v

〉
, (27)

where (t, f) → ρ(t,f) is a σ-representation of R2 and

σ
(
(t, f), (t′, f ′)

)
= e−2πif ′t. (28)

We explore some of the properties of this represention over the next few
subsections.

4.1 Basic Properties of the Ambiguity Function
We can quickly deduce four fairly straightforward properties:

Amb1 For all u,v ∈ L2(R), Au,v is in L2(R2) and ‖Au,v‖L2(R2) ≤
‖u‖L2(R)‖v‖L2(R).

Amb2 The map (u,v) → Au,v is conjugate bilinear from L2(R)×L2(R)
to L2(R2).

Amb3 Au,v(t, f) = e2πiftAv,u(−t,−f).

Amb4 For u,v ∈ L2(R),

AFu,Fv(t, f) = e2πiftAu,v(f,−t). (29)

Here, F denotes the Fourier transform.
Proof: The proof of Amb1 will be dealt with as part of a more specific
theorem in Section 4.3. The conjugate bilinearity is clear, hence Amb2
follows from Amb1. The proof of Amb3 is a simple calculation. First
notice that

ρ∗(t,f) = ρ−1
(t,f) = e2πiftρ(−t,−f), (30)

in view of (10). It follows that

Av,u(−t,−f) = 〈v, ρ(−t,−f)u〉
= 〈ρ∗(−t,−f)v,u〉
= e2πift〈ρ(t,f)v,u〉
= e2πiftAu,v(t, f).

(31)
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To deal with Amb4, we note first that, by the Plancherel theorem,

〈u,v〉 = 〈Fu,Fv〉 (u,v ∈ L2(R)). (32)

Further, it is easy to check that

F [ρ(t,f)w
]

= e−2πiftρ(−f,t)F [w]. (33)

Now it follows that

AFu,Fv(t, f) =
〈Fu, ρ(t,f)Fv

〉
=
〈Fu, e−2πiftF [ρ(f,−t)v]

〉
= e2πift〈u, ρ(f,−t)v〉
= e2πiftAu,v(f,−t).

(34)

�
It is remarked that Amb3 is a particular case of a more general

formula applying to any σ-representation ρ:

〈u, ρgv〉 = σ(g, g−1)〈v, ρg−1u〉 (g ∈ G, u,v ∈ L2(R)). (35)

4.2 Irreducibility
The following result is really one of the two most important results in

the theory of the radar ambiguity function. The other is Theorem 2.

Theorem 1 The σ-representation ρ is irreducible and, moreover, it is
the unique irreducible σ-representation of R2 up to equivalence.

Proof: The proof of the uniqueness of ρ would take us too far from
the key aim of this paper. It is called the Stone-von Neumann Theorem
and requires some deep ideas in representations of R. Even the proof
of irreducibility relies on some results in harmonic analysis that go well
beyond the scope of this paper. To prove irreducibility we use Schur’s
Lemma. Suppose that B : L2(R) → L2(R) is an intertwining operator
of ρ with itself. Then, in particular, it commutes with the translation
operators

ρ(t,0)(v)(τ) = v(τ − t). (36)

Such an object B is known as a pseudo-measure. The only fact we need
about pseudo-measures is that they have a Fourier transform B̂(f) such
that

̂B(v)(f) = B̂(f)v̂(f) (f ∈ R), (37)
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and that this Fourier transform specifies a pseudo-measure uniquely. We
refer the interested reader to (Katznelson, 1968) for details. Now we note
that

̂ρ(0,f ′)(v)(f) = v̂(f + f ′). (38)

Since B must commute with these operators too, its Fourier transform
is translation invariant and so must be constant. It follows that B itself
is a scalar multiple of the identity and so ρ is irreducible. �

4.3 Moyal’s Identity
Here we establish a result that is one of the key special features of the

representation ρ and the ambiguity function. Before we state the result,
we establish some terminology and notation. The Hilbert space tensor
product of two Hilbert spaces H and K is the completion of the linear
space of all finite formal sums∑

k

uk ⊗ vk, (39)

where uk and vk are in H and K respectively. The completion is with
respect to the norm obtained from the inner product〈∑

k

u(1)
k ⊗ v(1)

k ,
∑
k′

u(2)
k′ ⊗ v(2)

k′
〉

=
∑
k,k′

〈
u(1)

k ,u(2)
k′
〉
�

〈
v(1)

k ,v(2)
k′
〉
�
. (40)

We assume there is a conjugate linear isometry J : K → K (in fact
this will be conjugation in L2(R) in our context). Evidently, given any
conjugate bilinear map B : H × K → L that satisfies∥∥∑

k

B(uk,vk)
∥∥
�
≤ ∥∥∑uk ⊗ vk

∥∥
�⊗� (41)

for any finite set {(uk,vk)} of elements of H × K, there is a continuous
linear map B⊗ : H ⊗ K → L such that the diagram

H × K
I ⊗ J

H ⊗ K

B
B⊗

L

extends to a continuous linear map from H ⊗ K → L. We note that
the tensor product of L2(R) with itself is just L2(R2). The following
theorem is in essence Moyal’s identity.
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Theorem 2 The map (u, Jv) → Au,v extends to an isometry from
L2(R2) to itself.

Proof: It is easy to see that this map (for finite sums of simple tensors
in the first instance) is just

Φ(F )(t, f) =
∫

F (τ, τ − t)e2πifτ dτ, (42)

which, since we know that the Hilbert space tensor product of L2(R)
with itself is just L2(R2), clearly satisfies the condition (41). If we write
W : L2(R2) → L2(R2) for the map

W (F )(τ, t) = F (τ, τ − t), (43)

it is clear that it is an isometry of L2(R2) and that Φ is just (I ⊗F)◦W
where F is the one dimensional Fourier transform. The result is now
clear. �

Corollary 3 For u1,v1,u2,v2 ∈ L2(R),

〈Au1,v1, Au2,v2〉L2(R2) = 〈u1,u2〉L2(R)〈v1,v2〉L2(R). (44)

It is equation (44) that is commonly referred to as Moyal’s Identity. This
has in turn another corollary.

Corollary 4 For u,v ∈ L2(R),

‖Av,v‖L2(R2) = ‖v‖2. (45)

This is a form of the Heisenberg uncertainty principle. To explain its
significance, we need to make a few remarks about the way radars nor-
mally operate. When the return comes back into the receiver from a
scene, noise is added by the receiver. This is just thermal noise in the
electronic components. To a very good approximation this is white Gaus-
sian noise — a stationary Gaussian random process in which restrictions
to disjoint intervals are independent. Such a process (with finite energy)
cannot exist mathematically, but as already stated, this is an approxima-
tion. If one asks what waveform v when used for filtering in the receiver
will maximize the signal-to-noise ratio, one can show that the correct
choice is v = w. So it is normal (at least in theoretical discussions of
radar) to assume that v = w — the so-called matched filter.

We note that by (3) the processed return is just the convolution of the
range-Doppler scene with the ambiguity. Evidently then, so that we can
extract the scene from the return, we would like Av,v (or Av,w) to be
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a delta function or close to it. Moyal’s identity makes this impossible.
Clearly the value of Av,v at the origin is just ‖v‖2 and this is also its L2

norm, so that it must have considerable spread.
As we shall see later, an important collection of waveforms (in the-

ory but not in practice) are the Hermite functions. In fact it will be
convenient for us to use a renormalized form of them. We write

vn(t) = π−1/4(2nn!)−1/2(−1)ne−t2/2Hn(t), (46)

where Hn is the nth Hermite polynomial, defined implicitly by the gen-
erating equation ∑

n

1
n!

Hn(t)zn = e−z2+2zt. (47)

The vn form an orthonormal basis of L2(R). It follows from Moyal’s
identity that the collection {Avn,vm}n,m therefore forms an orthonormal
basis of L2(R2).

4.4 The Symmetric Ambiguity Function
In practical radar systems, the location (t, f) of a target is usually

estimated by maximising the magnitude of the inner product between
the received waveform v(τ) and the adjusted version ρ(t,f)(w)(τ) of the
transmitted waveform w(τ). Here, ρ(t,f)(w)(τ) corresponds to what
would have been received in the ideal case had there been a single target
at “distance” t moving at “velocity” f . Therefore, it is only the magni-
tude of the ambiguity function, and not its phase, which provides useful
information about the performance of the system.

Let φ : R2 → T be an arbitrary Borel map. Then the magni-
tude of

〈
v, φ(t, f)ρ(t,f)w

〉
equals the magnitude of the ambiguity func-

tion Av,w(t, f). Moreover, the results of Section 3 imply that ρ
(ν)
(t,f) =

φ(t, f)ρ(t,f) is actually a ν-representation of R2 for some multiplier ν co-
homologous to σ. Therefore, what is of interest is not the properties of
the particular ambiguity function Av,w(t, f), but rather the properties
shared by all functions of the form

〈
v, ρ

(ν)
(t,f)w

〉
. Since multiplier repre-

sentation theory does not distinguish between cohomologous multipliers,
this shows that radar theory really is concerned with the σ-representation
theory of R2, no more and no less.

Replacing σ by a cohomologous multiplier ν changes (the phase but
not the magnitude of) the corresponding ambiguity function. Being able
to work with different ambiguity functions can simplify calculations.
The symmetric ambiguity function is now derived by considering the
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multiplier ν defined by

ν
(
(t, f), (t′, f ′)

)
= e−πi(f ′t−t′f). (48)

This is cohomologous to σ because

ν((t, f), (t′, f ′))
σ((t, f), (t′, f ′))

= eπi(t′f+f ′t) =
e−πitfe−πit′f ′

e−πi(t+t′)(f+f ′) .
(49)

In fact, one can show that up to coboundaries and automorphisms of
R2, this is the only cocycle on R2. Switching to this multiplier from σ,
we obtain an alternative formula for ρ, this time as a ν-representation.
From the formulae (22) and (49), we obtain

ρ
(ν)
(t,f)(v)(τ) = eπiftρ(t,f)(v)(τ) = eπif(t−2τ)v(τ − t), (t, f) ∈ R2.

(50)
This results in the following form for the radar ambiguity function

A
(ν)
u,v(t, f) =

∫
R

u(τ +
t

2
)v(τ − t

2
)e2πifτ dτ. (51)

This is referred to as the symmetric form of the ambiguity function.
Note that because ν((t, f), (−t,−f)) = 1, we obtain from (35) the

tidier form
A

(ν)
u,v(t, f) = Av,u(−t,−f) (52)

of Amb3. In a similar vein, the new form of Amb4 is

A
(ν)
Fu,Fv(t, f) = A

(ν)
u,v(f,−t). (53)

4.5 The Heisenberg Group
Using the ideas of Section 3 and the cocycle σ corresponding to ρ,

it is possible to form a central extension of R2 by T. The result is a
group G0 whose centre Z0 is (in this case) isomorphic to T and for which
G0/Z0 is isomorphic to R2. It is customary instead to use the R-valued
cocycle σR given by

σR

(
(t, f), (t′, f ′)

)
= f ′t, (54)

so that σ = e−2πiσR . The result of applying the trick of equation (23)
in this context produces a central extension of R2 by R, which is called
the (3-dimensional) Heisenberg group

H =

⎛⎝1 t z
0 1 f
0 0 1

⎞⎠ . (55)
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The corresponding representation of H is

ρ̃(t, f, z)(v)(τ) = e2πize−2πifτv(τ − t). (56)

There is another extension (but isomorphic qua central extensions)
formed using ν, but we refrain from giving the details. In fact, we
continue to present the theory of the radar ambiguity function in terms of
multiplier representations of R2 rather than the slightly more customary
ordinary representation theory of the Heisenberg group.

4.6 The Bargmann-Segal Representation
While the Stone-von Neumann Theorem tells us that there is only one

irreducible σ-representation of R2, or equivalently that there is only one
irreducible representation of the Heisenberg group that restricts to the
homomorphism z → e2πiz in the centre of H, there are many equivalent
ways of seeing this representation. The way we have discussed so far is
called the Schroedinger representation of H. Here and in the following
section we present two other ways of looking at this representation.

It is shown in (Wilcox, 1991) that the Hermite waveforms vn(t), de-
fined in (46), have ambiguity functions whose peak at the origin is as
sharp as possible (in a sense made precise there). The Hermite wave-
forms are also the eigenfunctions of a particular linear operator defined
in Section 4.8. Since the Hermites appear to play a fundamental role,
it is desirable to construct a σ-representation on a new Hilbert space F
such that the waveforms corresponding to the Hermites are as simple as
possible. Such a representation is stated below.

Consider the space F of entire functions a(z) =
∑

n anzn satisfying∑
n n! |an|2 < ∞. This is a Hilbert space with the inner product

〈a,b〉 =
∑
n

n! anbn. (57)

This is actually a reproducing kernel Hilbert space, in that there exist
elements eu, for any u ∈ C, such that

〈a, eu〉 = a(u), a ∈ F. (58)

Furthermore, the vectors

jn(z) =
zn

√
n!

, n = 0, 1, · · · (59)

form an orthonormal basis for F.
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We can explicitly write down an isometry Ψ : L2(R) → F which maps
vn(t) to jn(z), namely

Ψ(u)(z) =
∞∑

n=0

〈u,vn〉jn(z)

=
∫
R

1
π1/4

e−(z2+t2)/2−√
2ztu(t) dt.

(60)

Here, the second line is obtained with the help of (47).
The isometry Ψ maps the representation ρ to the equivalent repre-

sentation ρBS = Ψ ◦ ρ ◦ Ψ−1 on F. This is called the Bargmann-Segal
σ-representation of R2. It is given explicitly by

ρBS
(t,f)(a)(z) = e

− t2+4π2f2

4
+ z√

2
(2πif−t)−πift a

(
z +

t + 2πif√
2

)
. (61)

The derivation of (61) is postponed until Section 4.8.

4.7 The Lattice Representation
The third equivalent version of the representation ρ is the so-called

lattice representation. It arises as an induced σ-representation from the
lattice subgroup Z2 of R2 or equivalently as an induced ordinary repre-
sentation from the corresponding subgroup of the Heisenberg group H.
The Hilbert space here is the space of all functions r : R2 → C satisfying

r(x + n, y + m) = e−2πinyr(x, y), (62)

and which are square integrable in the sense that∫ 1

0

∫ 1

0
|r(x, y)|2 dx dy < ∞. (63)

Note that, in view of (62), the integrand is periodic. This space has the
obvious inner product. Now we can define a σ-representation ρL of R2

by
ρL

(t,f)(r)(x, y) = e2πifxr(x + t, y + f). (64)

It is not hard to see that this is a σ-representation. To prove irreducibil-
ity we show directly that it is equivalent to ρ. The intertwining operator
is known as the Weil-Brezin-Zaks transform and is given by

Z[u](x, y) =
∞∑

k=−∞
e−2πikyu(k − x) (u ∈ L2(R)). (65)
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It is straightforward to check Z[u] satisfies both (62) and (63). Its inverse
is given by

Z−1[r](τ) =
∫ 1

0
r(−τ, y) dy. (66)

To check the intertwining property, we observe

Z[ρ(t,f)(u)](x, y) = e2πifx
∞∑

k=−∞
e−2πik(f+y)u(k − x − t)

= ρL
(t,f)(Z[u])(x, y).

(67)

Note that this forces Z to be a scalar multiple of an isomorphism and it
is straightforward to see from this that it is indeed an isomorphism.

Although not discussed here, there are links between the lattice rep-
resentation and number theory. For instance, the Jacobi theta function
appears in the expression for Z[v0](x, y), where v0 is the zeroth Hermite
waveform defined in (46).

4.8 The Lie Algebra Representation
Recall that the σ-representation ρ extends to a representation on the

Heisenberg group H. Since H is a Lie group, the representation ρ in-
duces a Lie algebra representation on the Lie algebra h associated with
H. The Hermite polynomials naturally arise in this framework as the
eigenvectors of a particular linear operator.

The Heisenberg group has a Lie algebra h which, as an additive group,
is R3 and has generators T , F , Z satisfying

[T, F ] = Z, [T,Z] = 0, [F,Z] = 0. (68)

The representation ρ̃ of H produces a representation, which we also
denote by ρ̃, of the Lie algebra by unbounded operators on L2(R). In
the case of ρ̃, the representations of the generators are

ρ̃(F ) = −2πit; ρ̃(T ) = − d

dt
; ρ̃(Z) = 2πi. (69)

It is easily checked that these satisfy (68). Let

A =
1√
2

(
T +

1
2πi

F
)

(70)

and observe that
ρ̃(A) =

−1√
2

( d

dt
+ t
)
. (71)
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Its adjoint is

ρ̃(A)∗ =
1√
2

( d

dt
− t
)
. (72)

We define N = ρ̃(A)∗ρ̃(A) and remark that it is a self-adjoint operator.
The normalized solution of ρ̃(A)(v) = 0 in L2(R) is

v0(t) =
1

π1/4
e−t2/2, (73)

the zeroth Hermite function in (46). In fact, the eigenvalues of N are
{0, 1, 2, . . .} and the corresponding eigenvectors of N are the vn as
defined in (46). Indeed, one can show easily that

ρ̃(A)∗(vn) =
√

n + 1vn+1

ρ̃(A)(vn) =
√

nvn−1.
(74)

The Bargmann-Segal representation stated in Section 4.6 is now de-
rived. Define the Hilbert space F as in Section 4.6 and let Ψ be the
isometry in (60). Deriving an expression for ρBS = Ψ ◦ ρ ◦ Ψ−1 directly
is difficult, but it can be found indirectly by first calculating the corre-
sponding Lie algebra representation ρ̃BS, as follows.

Since ρ = Ψ−1 ◦ ρBS ◦ Ψ, it follows that ρ̃ = Ψ−1 ◦ ρ̃BS ◦ Ψ and ρ̃∗ =
Ψ−1 ◦ ρ̃BS

∗ ◦ Ψ. Therefore, ρ̃(A)(v0) = 0 implies ρ̃BS(A)(j0) = 0, that
is, ρ̃BS(A)(1) = 0. Similarly, ρ̃(A)(vn) =

√
nvn−1 implies ρ̃BS(A)(zn) =

nzn−1. Therefore,

ρ̃BS(A) =
d

dz
, (75)

or upon substituting for A,

ρ̃BS(T ) +
1

2πi
ρ̃BS(F ) =

√
2

d

dz
. (76)

It is readily shown that ρ̃(T ) and ρ̃(F ) are skew-adjoint, hence so are
ρ̃BS(T ) and ρ̃BS(F ). That is to say, ρ̃BS(T )∗ = −ρ̃BS(T ) and similarly
for ρ̃BS(F ). Therefore, taking the adjoint of (76) yields the new equation

−ρ̃BS(T ) +
1

2πi
ρ̃BS(F ) =

√
2z (77)

where use has been made of the facts that the adjoint of d
dz is z and

the adjoint of a complex number is its complex conjugate. Solving the
equations (76) and (77) gives

ρ̃BS(T ) =
1√
2

(
d

dz
− z

)
, ρ̃BS(F ) =

√
2πi

(
d

dz
+ z

)
. (78)
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Exponentiating these two operators shows that

ρBS
(t,0)(a)(z) = exp

(
− t2

4
− tz√

2

)
a
(

z +
t√
2

)
,

ρBS
(0,f)(a)(z) = exp

(
−π2f2 +

√
2πifz

)
a
(
z +

√
2πif

)
.

(79)

Equation (61) now follows upon noting that ρBS
(t,f) = ρBS

(0,f)ρ
BS
(t,0).

4.9 The Metaplectic Representation
Here we consider automorphisms of R2 that preserve the structure

we have discussed so far. In fact, it is more customary at this point to
work with the equivalent multiplier ν, defined in (48), rather than the
multiplier σ. We consider, then, the continuous automorphisms α of the
group R2 that preserve the multiplier ν in the sense that

ν(α(t, f), α(t′, f ′)) = ν((t, f), (t′, f ′)), (t, f), (t′, f ′) ∈ R2. (80)

These are just the members of SL(2,R) — 2× 2 matrices with determi-
nant 1. Evidently, for any such automorphism, ρ(ν) ◦ α is an irreducible
ν-representation of R2 and so, up to equivalence, must be ρ(ν) itself by
the Stone-von Neumann Theorem. Thus there exists a unitary operator
U(α) such that

U(α)−1ρ
(ν)
(t,f)U(α) = ρ

(ν)
α(t,f), (t, f) ∈ R2. (81)

Since ρ(ν) is irreducible, U(α) is unique up to a scalar multiple.
Moreover, U(αβ) must have the same effect on ρ(ν) as U(α)U(β) and

so, by the irreducibility of ρ(ν), these two must also differ by a multi-
plicative constant. In other words, the map α → U(α) is a projective
representation of SL(2,R). In fact, the multiplier is cohomologous to a

two-valued one. Thus, there is a double covering ˜SL(2,R) of SL(2,R)

and U lifts to a unitary representation of ˜SL(2,R) on L2(R). This is

called the metaplectic representation of ˜SL(2,R). (The representation
is not irreducible, but rather, L2(R) decomposes as the direct sum of
two subspaces, where the representation restricted to either of the two
subspaces is irreducible.)

5. Ambiguity Functions
This section uses the earlier results on the σ-representation theory of

R2 to establish several facts about ambiguity functions.
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5.1 Ambiguity Functions of the Hermites
Let ρnm(t, f) = 〈vn, ρ(t,f)vm〉 denote the ambiguity functions asso-

ciated with the Hermite waveforms vn defined in (46). This section
outlines how a closed form expression for ρnm(t, f) can be obtained.

The Hermite waveforms are simpler in the Bargmann-Segal space,
so the first step is to notice that ρnm(t, f) = 〈jn, ρBS

(t,f)jm〉 because the
isometry Ψ maps vn to jn; see Section 4.6 for notation. Next, write
down the generating function

G(t, f ; a, b) =
〈
eā, ρ

BS
(t,f)(eb)

〉
=

∞∑
n,m=0

〈
jn, ρBS

(t,f)(jm)
〉 anbm

√
n!m!

(82)

where the second equality follows from the fact that eu, defined implicitly
by (58), is given explicitly by

eu =
∞∑

k=0

ūk

√
k!

jk. (83)

Using the reproducing kernel property (58) shows that

G(t, f ; a, b) = ρBS
(t,f)(eb)(ā)

= e
− t2+4π2f2

4
− a√

2
(t+2πif)+πift

eb(a+(t−2πif)/
√

2).
(84)

Equating coefficients of anbm in (82) and (84) results in an explicit ex-
pression for ρnm(t, f) =

〈
jn, ρBS

(t,f)jm
〉
. Moreover, making the substitu-

tion (t, f) = (r cos θ, r sin θ) allows this expression to be written in terms
of the Laguerre polynomials. See (Wilcox, 1991) or (Miller, 1991) for
details.

5.2 Symmetries of Ambiguity Functions
This section introduces the basic machinery for studying the possi-

ble symmetries of an ambiguity function. Although only the magnitude
|A(t, f)| of an ambiguity function A(t, f) is of interest in general, it
is significantly simpler to study symmetries of A(t, f) rather than of
|A(t, f)|. Changing multipliers changes the phase of the ambiguity func-
tion, thereby potentially altering the symmetry. It is therefore important
to note that this section chooses to work with the symmetric ambiguity
function defined in Section 4.4.

Recall from Section 4.9 that the elements of SL(2,R) preserve the
multiplier ν. Moreover, from (81), it follows that if A(ν)(t, f) is an
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ambiguity function then so too is A(ν)
(
α(t, f)

)
for any α ∈ SL(2,R).

Indeed,
A

(ν)
u,v

(
α(t, f)

)
=
〈
u, ρ

(ν)
α(t,f)v

〉
=
〈
u, U(α)−1ρ

(ν)
(t,f)

U(α)v
〉

= A
(ν)
U(α)u,U(α)v(t, f).

(85)

It follows that if S is a subgroup of SL(2,R) and the waveform u satisfies
U(α)u = u for all α ∈ S then the ambiguity function A

(ν)
u,u is symmetric

with respect to S. In fact, since it is shown in (Miller, 1991) that A
(ν)
u,u =

A
(ν)
u′,u′ if and only if u = λu′ for some λ ∈ T, we say that u has an

S-symmetric ambiguity function if and only if there exists a function
λ : S → T such that U(α)u = λ(α)u for all α ∈ S.

One interesting subgroup of SL(2,R) is the rotation group. However,
it is more natural to rotate a dilated version of the ambiguity function
so that the units of time and frequency are compatible. Let S denote
the group whose elements S(θ) are dilated rotations, namely

S(θ) =

( √
2π 0
0 1√

2π

)(
cos θ − sin θ
sin θ cos θ

)( 1√
2π

0
0

√
2π

)

=
(

cos θ −2π sin θ
1
2π sin θ cos θ

)
, θ ∈ [0, 2π).

(86)

Note that S is a subgroup of SL(2,R) and that S(−θ) is the inverse
of S(θ). It is now shown that the only waveforms with rotationally
symmetric (that is, S-symmetric) ambiguity functions are the Hermites.

Anticipating the involvement of the Hermites, we choose to work in
Bargmann-Segal space. Define UBS(α) = Ψ◦U(α)◦Ψ−1 so that ρ

BS(ν)
α(t,f) =

UBS(α)−1ρ
BS(ν)
(t,f) UBS(α). Here, Ψ is the isomorphism defined in (60) and

ρBS(ν) is the ν-representation analogue of (61), namely

ρ
BS(ν)
(t,f) (a)(z) = e

− t2+4π2f2

4
+ z√

2
(2πif−t) a

(
z +

t + 2πif√
2

)
. (87)

It is claimed
UBS

(
S(θ)

)
(a)(z) = a(eiθz). (88)

Indeed, S(θ)(t, f) =
(
t cos θ − 2πf sin θ, (2π)−1t sin θ + f cos θ

)
, hence

ρ
BS(ν)
S(θ)(t,f)(a)(z) = e

− t2+4π2f2

4
+ z√

2
(2πif−t)e−iθ

a
(

z +
t + 2πif√

2
eiθ

)
= UBS

(
S(θ)

)−1
ρ

BS(ν)
(t,f) UBS

(
S(θ)

)
(a)(z),

(89)
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as required. The rotationally invariant waveforms in the Bargmann-
Segal domain are thus those waveforms a(z) which satisfy

∀θ ∈ [0, 2π), a(eiθz) = λ(θ)a(z) (90)

for some λ mapping θ into T. The only solutions are the Hermite wave-
forms a(z) = jn(z), and scalar multiples of them, for n = 0, 1, · · · .

It is remarked that if the ordinary rotations R(θ) are considered in-
stead of the dilated rotations S(θ), then U

(
R(θ)

)
turns out to be the

fractional Fourier transform. Indeed, we know from (53) that U
(
R(θ)

)
is

the Fourier transform if θ = −π/2. Thus, U
(
R(θ)

)
embeds the Fourier

transform in a one parameter group.

5.3 Multiple Waveforms
This section presents an intriguing observation about how an ambi-

guity function hypothetically can be made to resemble the ideal delta
function, thus overcoming the Heisenberg uncertainty principle.

Assume it was somehow possible to transmit simultaneously but sep-
arately many different waveforms {un}N

n=1 and to receive the returns
separately too. What we have in mind is not using different portions of
the electromagnetic spectrum, which does not separate the waveforms
in the strict sense we require, but rather to imagine the hypothetical
situation of multiple universes where the target exists in each one but a
different waveform can be used to detect it in each universe.

If the waveforms are orthogonal and have equal energy with total en-
ergy one, so that ‖un‖2 = N−1, then it follows from Moyal’s identity
that the ambiguity functions Aun,un(t, f) are orthogonal, and in partic-
ular, the ambiguity function A(t, f) =

∑N
n=1 Aun,un(t, f) of the whole

system has norm

‖A(t, f)‖2 =
N∑

n=1

‖Aun,un‖2 =
N∑

n=1

‖un‖4 =
1
N

. (91)

This shows that there is less volume under the ambiguity surface for a
given total energy as N increases. Therefore, since A(0, 0) = 1, the total
ambiguity function can be made to approach the ideal delta function as
N approaches infinity.

6. The Wide Band Case
Our description of the Doppler effect is actually only an approximation

that works when the radial velocities of moving objects in the scene are
much smaller than the speed of light, and the transmitted signal has
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a spectrum in a narrow band around its carrier frequency. This is, of
course, a valid assumption on most circumstances in radar. However, in
sonar, which works on similar principles, it can often be the case that
objects move at a non-trivial proportion of the speed of sound in water
(around 1500 metres per second). Here it is appropriate to replace the
“narrow band approximation” by the so-called “wide band theory”. As
the name implies, this theory is also appropriate when the spectrum
of the transmit signal is broad, as is the case, for example, where the
transmit signal is a very short pulse. Such signals are not typical in
conventional radar systems, but again are in sonar, where the pulse is
often created by a small explosive charge.

The effect of Doppler is not, as we have suggested in (2), a shift
in frequency, but is a dilation of the signal. Thus the return from an
object moving at a radial velocity (towards the transmitter/receiver) of
v is, leaving aside the magnitude term,

ret(t) = w
(

αt − 2r
c + v

)
, (92)

where c is the speed of the wave and

α =
(1 − v

c )
(1 + v

c )
. (93)

This leads, after a rescaling, to an ambiguity function of the form

Wu,v(r, α) =
√

α

∫ ∞

−∞
u(t)v

(
α(t + r)

)
dt. (94)

The relevant representation in the wide band case is the representation

ρ(a,b)(v)(t) =
√

av(at + b), v ∈ L2(R), (95)

of the affine group

A =
{(

a b
0 1

)
: a > 0, b ∈ R

}
(96)

with group multiplication given by matrix multiplication. Note that
ρ(a,b) is actually a representation on the right, meaning ρg1g2 = ρg2ρg1

for all g1, g2 ∈ A. Analogous to the narrow band case, the wide band
ambiguity function can be expressed (after a change of coordinates) as

Wu,v(a, b) =
〈
u, ρ(a,b)v

〉
(97)

and its properties are studied by investigating the representation ρ(a,b)

of the affine group.
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This investigation is not undertaken here for reasons of space. The
interested reader is, however, referred to (Miller, 1991) for details. It is
remarked though that the representation theory of the affine group is
complicated by the affine group not being unimodular. That is to say,
whereas the left invariant Haar measure defined in (13) of the Heisenberg
group is also the right invariant measure of the Heisenberg group, the
left and right invariant measures of the affine group differ.
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