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Assorted Problems

Various Authors

1. Preservation of bandlimitedness under non-affine time warping for
multi-dimensional functions

S. Azizi, J.N. McDonald, and D. Cochran, Arizona State University

If f 2 L2(Rd) has compactly supported Fourier transform and 
 : Rd ! R
d has the

form 
(x) = Ax + b where A 2 GLd(R) and b 2 Rd, then h = f Æ 
 also has compactly
supported Fourier transform. It is possible to construct specific f and 
 so that f and f Æ 

both have compactly supported Fourier transforms, f is not the zero function, and 
 is a
continuous and invertible function that is not of the affine form just given. This construction
can be accomplished, for example, by considering a d-fold cartesian product of known one-
dimensional examples such as described in [1].

Under the assumption that 
 : Rd ! R
d is continuous and invertible, is it true that f Æ 


has compactly supported Fourier transform for all f 2 L2(Rd) with compactly supported
Fourier transform if and only if 
(x) = Ax + b?

[1] D. Cochran, S. Azizi, and J.N. McDonald, “Harmonic analysis and sampling in warped
spaces,” in 20th Century Harmonic Analysis — A Celebration, J.S. Byrnes, ed.

2. Window pairs that determine spectral phase

S. Shetty, J.N. McDonald, and D. Cochran, Arizona State University

Consider a finite sequence

(2.1) a(0); a(1); :::; a(n)

of complex numbers and the associated polynomial

(2.2) p(z) = a(0) + a(1)z + � � �+ a(n)zn:

The spectral magnitude of the sequence (2.1) or its associated polynomial (2.2) is the function
s : R ! C defined by s(!) = jp(ei!)j. In general, it is clear that two different polynomials
can have identical spectral magnitude functions. If, however, two polynomials p(z) and q(z)
have identical spectral magnitude functions and their respective derivatives p0(z) and q0(z)
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also have identical spectral magnitude functions (i.e., jp0(z)j = jq0(z)j for all z with jzj = 1),
then it can be shown that p(z) = cq(z) for some complex constant c with jcj = 1.

Define finite sequences w1(k) = 1 and w2(k) = k for k = 0; :::; n and consider the
sequences b1(k) = a(k)w1(k) and b2(k) = a(k)w2(k) obtained by “windowing” the original
sequence a(0); :::; a(n) with each of these new sequences. The polynomial associated with
b2(0); :::; b2(n) is r(z) = zp0(z), which has spectral magnitude function identical to that of
p0(z). Hence, the spectral magnitude functions of the two windowed sequences are sufficient
to determine p(z) up to a unimodular constant factor.

The problem posed here is to characterize all pairs of window sequences w1(0); :::w1(n)
and w2(0); :::w2(n) with the property that the spectral magnitude functions of the sequences
b1(k) = a(k)w1(k) and b2(k) = a(k)w2(k) are sufficient to determine any polynomial p(z)
of degree n up to a unimodular constant factor. The corresponding problem with spectral
phase in place of spectral magnitude is also of interest.

3. Questions on Riesz Products

J. P. Kahane, Université Paris-Sud

Riesz products, identified with positive measures, are of the form

�a =
1Y
n=1

�
1 + <(anei�nx)

�
�b =

1Y
n=1

�
1 + <(bnei�nx)

�
where (�n) is a given Hadamard sequence (�1 > 0, �n+1

�n
> q > 1), a = fang and b = fbng,

janj < 1 and jbnj < 1 for all n.

3.1. Question 1

Give a necessary and sufficient condition on (a; b) for �a � �b.
Partial answers are:P1

1 jan � bnj2 <1
sup janj < 1

�
) �a � �b (Peyzière, Brown-Moran)P1

1 jan � bnj2 <1
janj = jbnj

�
) �a � �b

(Parreau, Ann. Inst. Fourier 40, 2 (1990), 391–405).
Let us write

�a;' =
1Y
n=1

�
1 + <(anei(�nx+'n))

�
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3.2. Question 2

�a � �b , �a;' � �b;'.
Fan Ai-Lua is the author of this question. A positive answer would also answer question

1, using the following theorem of Klimer and Saeki (Ann. Inst. Fourier 38, 2 (1988), 63–93)
(cf. also Fan, Studia Math. (1991) 249–266).

If the 'n are random with the usual probability,P1

1 jan � bnj2
�
1 + cos2(tn�sn)p

2�jan�bnj

�
<1

tn = arg(an + bn)
sn = arg(an � bn)

9>>=>>;, �a;' � �b;'a:s:

Motivations and hints can be found in the article of Fan in Bull. Sc. Math. 2e s., 117
(1993), 421–439.

4. Completeness of sets of complex exponentials in convex sets: open problems

B.N. Khabibullin, Department of Mathematics, Frunze str. 32, Bashkir State University, Ufa,
Bashkortostan, 450074, Russia,
algeom@bsu.bushedu.ru and/or khabib-bulat@mail.ru

Let � = f�ng, n 2 N , be a sequence of pairwise different complex numbers (points) in
the complex plane C , 0 =2 �, and �n !1 as n! +1.

Let X be a convex open or closed set on C . By H(X) denote the space of all continuous
complex-valued functions on X which are holomorpic in the interior IntX of X (if IntX 6=
;) with the topology of uniform convergence on compact subsets of X . An exponential system
Exp� = fexp(�nz)g is complete in X if the closure of the linear span of Exp� in H(X)
coincides with H(X).

The completeness problem for a set X is to determine all such sequences of exponents
� for which the system Exp� is complete in X . On the background of known results it is
natural to look for the solution of the problem in terms of the density of the distribution of
the points of � and in terms of the geometric characteristics of X . It is natural to subdivide
the completeness problem into six cases according to the type of X:
1) X = [�a; a] is a segment on real axis R, a > 0, and H(X) = C[�a; a];
2) X = (�a; a), where a 2 (0;+1], or X = [0;+1), or X = (�1; 0];
3) X = G is an unbounded convex domain in C , [0;+1) � G;
4) X = ClosG, where G is the same as above, ClosG is the closure of G;
5) X = G is a bounded convex domain in C ;
6) X = K, where K is a compact convex set in C , IntK 6= ;;

Below, every item (k-!) or (k-?) is a continuation of item k), and (k-!) (respectively (k-?))
denotes a solved (respectively unsolved) problem.
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(1-?) No precise condition is known for the completeness of systems Exp� in [�a; a], and
finding such a condition is a very difficult problem. In this case we present a test for the
completeness of systems Exp� in [�a; a] to within a single exponential (see [5, Theorem 7]
together with recent results of B. Cole and T. Ransford [2]).

Here and below we denote by G the class of all extended Green functions gD(�; 0) for the
point 0 and arbitrary bounded regular (for the Dirichlet problem) domains D � C , 0 2 D,
gD(�; 0) � 0 for � =2 D.

THEOREM 1. If

sup
g2G

�X
n

g(�n)�
a

�

Z +1

�1

g(iy) dy
�

equals +1, then the system Exp� is complete in [�a; a]. Conversely, if this quantity is
bounded above, then by deleting a single (arbitrary) exponential from the system Exp� we
obtain a system that is not complete in [�a; a].

(2-!) In this case the completeness problem was solved completely by the profound Beurling-
Malliavin theorem on the radius of completeness [1].
(3-!) When X = G is an unbounded convex domain in C , the completeness problem was
solved completely in [3, Theorem 2].
(4-?) The width of an unbounded convex domain G, [0;+1) � G, is defined to be the
quantity dG = limx!+1 dG(x), where dG(x) = supfjz � z0j : z; z0 2 G; <z = <z0 = xg,
x 2 [0;+1).

If either dG = +1 or, for all x 2 R we have dG(x) 6= dG < +1, then sharp conditions
of completeness of Exp� in ClosG are the same as in (3-!). In the opposite case, there is a
test for the completeness of a system Exp� in ClosG only under conditions that the sequence
� is separated from the imaginary axis ( see [4, Corollary 4.2]):

THEOREM 2. LetG be an unbounded convex domain of width 2�d < +1, [0;+1) � G,
and suppose there exists one value of x 2 R such that dG(x) = dG. Suppose that a sequence
� satisfies the condition j<�nj > Æj�nj, n > n0, for a certain number Æ > 0. The system
Exp� is complete in ClosG if and only if

sup
16r<R<+1

 
max

( X
r6j�nj<R
<�n<0

�< 1

�n
;
X

r6j�nj<R
<�n>0

< 1

�n

)
� d log

R

r

!
= +1:

(5-?) At present the completeness problem has not been solved satisfactorily for any bounded
convex domain G. In our article [5, Theorem 5] we give a complete solution of the complete-
ness problem in a bounded convex domainG in terms of so-called Jensen functions. After [2]
this result can be formulated in the following way.
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Let G� be symmetric to G with respect to R, and let sG(�) be the arc length of the
boundary of ClosG� from a given point to the next (counter-clockwise) point of contact of
the supporting line that is orthogonal to the direction �.

Let g 2 G. The function kg(�) =
R +1
0

g(tei�) dt is called the indicator of g. Always the
indicator kg is the support function of a convex compact set Kg such that 0 2 IntKg 6= ;.
We set S(Kg; G) = 1

2

R 2�
0
kg(�) dsG(�) : This quantity is the mixed area of the convex sets

Kg and G�.

THEOREM 3. The system is complete in the convex bounded domain G if and only if

inf d > 1, where the infimum is taken over the numbers d for which supg2G

�P
n g(�n) �

d

�
S(Kg; G)

�
< +1 :

In this theorem, the class G of Green functions plays the role of test functions. However,
the class G is too wide. Some more transparent sufficient conditions can be extracted from
the Theorem 3. For example, they are in [6, Theorem A]. It is possible that these conditions
are necessary.
(6-?) No precise condition is known for the completeness of systems Exp� in K. The
completeness problem in K is apparently a very difficult problem (cf. with X = [�a; a]).
We present a test for the completeness of systems Exp� in K to within two exponentials (
see [5, x 7, 3.] together with [2]).

THEOREM 4. If the quantity supg2G

�P
n g(�n) �

1

�
S(Kg; K)

�
equals +1, then the

system Exp� is complete in K. Conversely, if this quantity is bounded above by a finite
number, then by deleting two (arbitrary) exponentials from the system Exp� we obtain a
system that is not complete in K.
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5. Density of Domain of the Weighted Hilbert Transform

Alexander Kheifets, kheifets@mail.ru

5.1. Problem 1

Let � be a nonnegative measurable function on the unit circle T: Assume that 1
�
2 L1

and for definiteness k 1
�
k1 = 1. In this case f 2 L2(�) implies f 2 L1; which allows one to

define the Hilbert transform Hf for f 2 L2(�) :

(Hf)(t) =
1

2�i

I
T

f(�)d�

� � t+
+

1

2�i

I
T

f(�)d�

� � t�
; t 2 T;

where the first and the second integrals are understood as the radial limits from inside and
outside of the unit disk D respectively. But Hf need not be in L2(�): We say that f is in
the domain of H on L2(�) if both f and Hf are in L2(�): Assume that the domain of H is
dense in L2(�): The question is: can this property be characterized in terms of �?

One can show that if 1
�

= jgj; where g is in the Hardy space H1
+; then the domain of H

is dense in L2(�) if and only if g is an exposed point of the unit ball in the space H 1
+: A

point b0 in a complex or real Banach space B is said to be an exposed point of the unit ball if
kb0k = 1 and there exists a real continuous linear functional F on B such that F (b0) = 1 and
F (b) < 1 for all other b in the unit ball. Regarding extreme and exposed points of the unit
ball in H1 see [1], [2], [3] and [4].

Obviously integrability of � is a sufficient condition for density of the domain but it is
not a necessary one. The interesting case is the one when � is not integrable.

5.2. Problem 2

Let w be a measurable unimodular function on the unit circle T : jw(t)j = 1 for a.a. t 2 T:
Assume that set P+wjH2

+ is dense in H2
+; where H2

+ is the Hardy space of analytic functions
and P+ is the orthogonal projection from L2 onto H2

+: The question is: how this property can
be characterized in terms of w?

One can show that the property holds true if and only if w is a canonical solution to
a Nehari problem. The Nehari problem consists in finding all the functions w bounded in
modulo by 1 on the unit circle T : jw(t)j 6 1 for a.a. t 2 T; with given P�w; where P� is the
orthogonal projection from L2 onto H2

�: Details regarding the Nehari problem can be found
in [5], [6], [7], [8], [1], [4].

It is also known that w is a canonical solution of a Nehari problem if and only if it is
of the form w = g

jgj
; where g is an exposed point of the unit ball in H 1

+: In this case the
representation is unique. See [2], [4] .
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6. Harmonic Sliding Analysis Problem

Vladimir Ya.Krakovsky, UNESCO/IIP International Research-Training Centre for Informa-
tion Technologies and Systems, 40 Academician Hlushkov Ave, Kyiv 03680 Ukraine,
krakovsk@uasoiro.freenet.kiev.ua

Harmonic sliding analysis (HSA) is a dynamic spectrum analysis [1] in which the next
analysis interval differs from the previous one by including the next signal sample and exclud-
ing the first one from the previous analysis interval. Such a harmonic analysis is necessary
for time-frequency localization [2] of analysed signals with given peculiarities. Using the
well-known Fast Fourier transform (FFT) is not effective in this context. More effective are
known recursive algorithms which use only one complex multiplication for computing one
harmonic during each analysis interval.

To yield an instant spectrum

(6.1) Fq(p) =
1

N

qX
k=q�N+1

f(k)W�pk
N ; p 2 0; P � 1; q = 0; 1; 2; : : :

it is possible to use a simple recursive algorithm, described in [3], [4]:

(6.2) Fq(p) = Fq�1(p) +
1

N
[f(q)� f(q �N)]W�pq

N ; p 2 0; P � 1; q = 0; 1; 2; : : : :

This algorithm has a remarkable peculiarity which permits one to organize HSA so that
one complex multiplication may be used for computing two, four and even eight (for complex
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signals) spectrum harmonics at once [5], [6], [7], [8]. This may be done as follows. Let
algorithm (2) be presented as follows:

(6.3) Fq(p) = Fq�1(p) + �Fq(p); p 2 0; P � 1; q = 0; 1; 2; : : : ;

(6.4) �Fq(p) =
1

N
[f(q)� f(q �N)] exp[�j 2�

N
pq]:

The spectrum increments �Fq(p) may be used not only for the spectrum harmonic p, but
for spectrum harmonics

(6.5) pi = iN=4 + p; i 2 1; 3

and

(6.6) pk = kN=4� p; k 2 1; 4

as well, using known properties of the complex exponential function. In a summarized (and
simplified) view the algorithm (3) modification may be presented as follows:
a) for spectrum harmonics (5)

(6.7) Fq(pi) = Fq�1(pi) + (�j)iq�Fq(p); q = 0; 1; 2; : : : ;

b) for spectrum harmonics (6)

(6.8) Fq(pk) = Fq�1(pk) + (�j)kq�Fq(�p); q = 0; 1; 2; : : : ;

where �Fq(�p) are complex conjugated spectrum increments �Fq(p), if the signal samples
are real, and if the signal samples are complex, �Fq(�p) are generated by inverting the signs
of the products of the signal increments �fq = 1

N
[f(q)� f(q �N)] with the imaginary part

of the weighting function and then forming the appropriate algebraic sums.
In such a way it is possible to use one complex multiplier for computing up to four

harmonics for a real signal, and up to eight harmonics for a complex signal, simultaneously.
We can now state the HSA problem: Is it possible to double the speed of the response by

using an additional multiplier? If so, how?
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input montgomery-problems

7. Questions on Kazhdan’s Property (T) on Hypergroups

Liliana Pavel, University of Bucharest, Faculty of Mathematics, Academiei 14, 70109 Bu-
charest, Romania, lpavel@@lan.unibuc.ro

Isolated points of the dual of a locally compact group (endowed with the hull-kernel
topology) were first discussed by Diximier [1]. Kazhdan [5] discovered there exists a clear
connection between the fact that the class of the one dimensional trivial representation is an
isolated point in the dual of a locally compact group (in this case the group is said to have
property (T )) and many interesting group properties.

In [6] we have initiated the study of property (T ) on hypergroups (with Haar measure),
obtaining only some introductory results. We have given an appropriate definition of property
(T ) for hypergroups: this definition is an extension of the corresponding one for locally
compact groups of [3]. Consequently, we say that a hypergroup K has property (T ) if each
continuous representation of K which has almost invariant vectors has also invariant vectors.
(We recall that a representation � ofK on the Hilbert spaceH� has almost invariant vectors if,
for any " > 0 and C � K, C compact, there exists a 2 H�, with kak = 1 such that k�xa�
ak < ", 8x 2 C; � has invariant vectors if there exists b 2 H�, with kbk = 1; such that
�xb = b; 8x 2 K:)

We note that in the particular case when K is a locally compact group this definition
is equivalent with the one given by Kazhdan [5]. For arbitrary hypergroups, we have only
obtained that if K is a hypergroup with property (T), then the class of the one dimensional
trivial representation is an isolated point in the dual of K ( [6, Theorem 2]), so we ask if the
converse is still valid.

It is well known that any amenable non-compact locally compact group has no property
(T ). This is an immediate consequence of the fact that a locally compact groupG is amenable
if and only if it satisfies Reiter’s condition (P2): 8" > 0, 8C � G, C compact, 9f 2 L2(G),
f > 0, kfk2 = 1, such that kÆx � f � fk2 < ", 8x 2 C, or, equivalently, the left regular
representation �G of G on L2(G) has almost invariant vectors; �G obviously has no invariant
vectors if G is not compact.

For non-compact hypergroups (with Haar measure), the amenability is not equivalent to
(P2). In [7, Example 4.6] an example is given of a non-compact amenable hypergroup that



378 Various Authors / Assorted Problems

does not satify (P2); it is also proved that (P2) implies the amenability ( [7, Theorem 4.1]).
Consequently, for hypergroups, we can obtain, with similar arguments as for locally compact
groups, that any non-compact hypergroup K satisfying condition (P2) has no property (T ):

For example, if K is a non-compact amenable hypergroup with a supernormal subhyper-
group, or if K is a non-compact commutative hypergroup with the Plancherel measure on the
dual such that its support contains the trivial character, then K satisfies (P2) ( [7, Theorem
4.7, Lemma 4.5]). In these cases, K has no property (T ).

We can not yet give a general answer concerning the relation between amenability and
property (T ) for the hypergroups case. Thus, we close with the question: Does there exist an
amenable non-compact hypergroup having property (T ) (?).
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8. Optimal Speech Signal Partition into One-Quasiperiodical Segments

Taras K. Vintsiuk, UNESCO/IIP International Research-Training Centre for Information
Technologies and Systems, Kyjiv 03680 Ukraine,
vintsiuk@uasoiro.freenet.kiev.ua

8.1. Introduction

It is well known that analysis of such complicated signals as speech signals has to be
carried out synchronically with a current pitch period (quasiperiod). Besides, for speech
signal it is important to find current one-quasiperiod segment duration, beginnings and ends
as well.

To solve this problem quasi-periodicity and non-periodicity signal models are proposed.
Each hypothetical one-quasiperiodical signal segment is considered as a random distortion of
previous or following one taken with the unknown multiplying factor. The problem of optimal
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current pitch period discrimination and speech signal partition into quasiperiodical and non-
periodical segments consists in 1) the finding the best quasiperiod beginnings or the one-
quasiperiod segments under restrictions on both value and changing of current quasiperiod
duration and multiplying factor and 2) the association of optimal one-quasiperiod segment
signals into large quasiperiodic and non-periodic segments. For this problem solving an
effective algorithm based on dynamic programming have to be proposed.

8.2. One-Quasiperiodicity Models

Let the signal fn , n = 1 : N be observed where fn is a signal value at the discrete uniform
time n�t with step �t, for example �t = 50 �s for speech signal. If the (s + 1)-th one-
quasiperiod signal segment beginning is denoted by ns , then (ns � 1) will be the end of the s-
th one-quasiperiod. Further segment signal fns�1+j; j = 0 : (Ts � 1) ; Ts = ns�ns�1 will
be called s-th one-quasiperiod segment with duration Ts , if it is approximated sufficiently
well by neighbouring ones, (s� 1)-th or (s+ 1)-th, which respectively precedes or follows
the s-th one-quasiperiod segment. The latter is taken with the unknown multiplying number
��s or �+s :

(8.1) f�ns�1+j =

�
��s fns�2+j; j = 0 : (min (Ts; Ts�1)� 1) ;
0; j = min (Ts; Ts�1) : (Ts � 1) ;

(8.2) f+ns�1+j =

�
�+s fns+j; j = 0 : (min (Ts; Ts+1)� 1) ;
0; j = min (Ts; Ts+1) : (Ts � 1) :

Let us introduce a priori restrictions for multiplying number value � and both current
quasiperiod duration value Ts and its changing �s = Ts � Ts�1:

(8.3) f�s : 0 6 �min 6 �s 6 �maxg = A; Tmin 6 Ts 6 Tmax; j�sj 6 �max:

Let us fix the elementary quasi-periodicity (EQP) measure for the s-th one-quasiperiodic
signal segment fns�1+j = fns�Ts+j; j = 0 : (Ts � 1) as:

d
�
(ns; Ts) ;�

�
s

�
=

�2A

min

Ts�1X
j=0

�
fns�1+j � f�ns�1+j

�2
=

(8.4) =
�2A

min

min(Ts���s ; Ts)�1X
j=0

�
fns�Ts+j � �fns�2Ts+��s +j

�2
+

Ts�1X
j=min(Ts���s ;Ts)

f 2ns�Ts+j

or

d
�
(ns; Ts) ;�

+
s

�
=
j�+j6�max

min
�2A

min
Ts�1X
j=0

�
fns�1+j � f+ns�1+j

�2
=
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(8.5) =
06�+6�max

min

0BBB@
�2A

min
min(Ts��+; Ts)�1P

j=0

(fns�Ts+j � �fn+j)
2+

+
Ts�1P

j=min(Ts��+;Ts)

f 2ns�Ts+j

1CCCA :

As it is followed from the expression (8.4-8.5) the signal segment

fns�1+j = fns�Ts+j; j = 0 : (Ts � 1)

is tested on quasiperiodicity by comparison with previous segment

fns�2Ts+��s +j; j = 0 :
�
Ts ���

s � 1
�

and all possible following ones fns+j; j = 0 : (Ts ��+ � 1) ; j�+j 6 �max but only the
best comparison result is associated with the quasiperiodicity measure value d ((ns; Ts) ;��

s ).
Any permissible variant ((ns; Ts) ;��

s ) ; s = 0; 1; 2; :::; P of the signal fn; n = 1 : N
segmentation on P one-quasiperiodic segments under restrictions (8.3) is characterised by the
sum of respective EQP measure values:

(8.6) G (ns; s = 0 : P ) =
PX
s=0

d
�
(ns; Ts) ;�

�
s

�
To find for the signal fn; n = 1 : N the best segmentation onto unknown number P

one-quasiperiod segments it is necessary to minimise the criteria (8.6) on all permissible
sequences ns; s = 0 : P .

8.3. Problems to be Solved

The following problems have to be solved.
1. To propose effective dynamic programming algorithm for optimal partition of signal into
one-quasiperiodical segments.
2. To determine ways how to unite one-quasiperiodical segments into large quasiperiodic or
non-periodic ones.
3. For each time n to formulate some necessary and sufficient conditions that a certain
pair (n�; T �) ; n� < n is an optimal one-quasiperiodic segment beginning n� and duration
T � independently on future signal after n:
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9. A question of “complexity”

J. A. Ward, Murdoch University

This problem arises in discrete-time worst-case system identification [9].
In time-domain identification we wish to identify the impulse response h of a time-

invariant linear system within a prescribed tolerance, using a finite number of sampled values
of the output y corresponding to a chosen input signal u. The output signal y is the sum of
the system response u�h and a noise term �; so that y = u�h+�. Both u and h are bounded
real or complex valued one-sided sequences, and � denotes the usual convolution. It is as-
sumed that h belongs to some specified model set, such as one of the polynomial sequence
sets Pn, or the sets V(p; r) that are associated with linear systems whose transfer functionsH
are rational functions and whose poles (if any) occur outside the unit circle. Here H is the z-
transform bh of the impulse response. In frequency-domain identification the aim is to identify
H using a finite number of noisy sample values of H on the unit circle. The sample values
are obtained by measuring the system’s response to a sinusoidal input. It is also assumed that
H belongs to some prescribed model set, such as the disc algebra A(D ), although additional
conditions may be placed on H:

In worst-case identification the noise term � is simply assumed to be uniformly bounded
and jj�jj1 6 Æ, where jj�jj1 denotes the supremum norm. The `1, `2 and H1-norms are
most often used to measure the accuracy of model estimates (tolerance).

Both time- and frequency-domain worst-case identification problems can be recast within
a more abstract framework [7], [2]. Suppose that X is a normed linear space,

'1; '2; : : : ; 'N ; : : :

a uniformly bounded sequence of continuous linear functionals on X ; and that � > 0: Sup-
pose also that

yk = 'k(h) + �k and j�kj 6 Æ for each 1 6 k 6 n;

where h is an unknown element of a given subsetM ofX . Then, using y1; y2; :::; yn;we want

to find eh in M so that



h� eh


 < � . If we can do this, then we say that f'1; '2; : : : ; 'ng is

a (Æ; �)-identifying set for M. The connection with time-domain identification is that each
'k(h) = (u � h)k; where u is the chosen input, while for frequency-domain identification
'k(h) = H(zk) = bh(zk) where z0; z1; :::; zn�1 are points on the unit circle.

The complexity of identification inM for a given tolerance � and noise bound Æ is defined
to be the minimum number of ‘observations’ or functionals required to obtain an estimate
within that tolerance for the given noise bound. It depends on M and on the type of func-
tionals that are allowed. Since kfk2 = kfkH2 6 kfkH1 6 kfk1 for any sequence f , the
complexity of identification in M decreases as we replace the `1 norm on M, by the H1

norm, and then by the `2 norm. It is known that `1 identification is typically ‘exponential’ in
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complexity, and so not very practical (see [1], for example). On the other hand, bothH1 and
`2 identification are typically ‘polynomial’ [3], [5], [8].

A drawback to using the conservative `1 norm to measure the noise component is that a
single outlier may make this very large, and this in turn may make it difficult to ‘identify’ the
system using standard techniques. An obvious way to address this difficulty is to replace the
`1 norm by a norm that is less sensitive to outliers. More generally we work with a sequence
(kkn) of seminorms on Rn, assuming that each is dominated by the `1 norm. The problem
then is to determine the complexity for different choices of M and norms on the noise.

We are helped in this task by the observation [3], [2], [7], that when the `1 norm is used
to measure the noise, then linear functionals '1; '2; '3; : : : ; 'n form a (Æ; �)-identifying set
for an absolutely convex set M if and only if

max
16k6n

j'k(h)j > Æ for each h 2 M� ;

where M� = fh 2 M : khk = �g:
A related result [6] for the generalised noise measure case is that there is a ‘robustly

convergent’ algorithm for estimating h on the basis of n test functional values if and only if
there is a number " > 0 such that

lim
n!1

inf k('1(h); '2(h); :::; 'n(h))kn > " khk for each h:

This is relevant because it can be shown that if there is such an algorithm then for any noise
bound Æ and tolerance level � there is a finite subset of the 'ks that form a (Æ; �)-identifying
set for M.

For a concrete version of the problem, what is the complexity of identification if we
suppose that M = A(D ) with its usual norm, and that kkn = kk

�
for all n, where kk

�
is an

Orlicz or Lorenz norm on A(D )? Of particular interest is the case of the Lorenz norm given
by kxkw = kxkw = k(1; 1; :::; 1)kw ; where

kxkw = sup
�2�n

nX
j=1

��x�(j)��wj for each x = (x1; x2; :::; xn) 2 Rn;

and �n denotes the set of permutations of f1; 2; :::; ng; and where w = (1; 1; :::; 1; 0; 0; ::; 0);
with the first K terms equal to 1.
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10. Rate of decay of convolution vs. frequency of sign changes

H.S. Shapiro

All references, as well as further background discussion concerning the present problem
may be found in reference [S].

Let f be in L1(R+) (the class of real-valued bounded measurable functions on (0;1)).
Then, the following, due to B.F. Logan, Jr., is known: If

(10.1) F (y) :=
2

�

Z 1

0

�
y

x2 + y2

�
f(x) dx; y > 0

satisfies

(10.2) F (y) = O(e�ay) as y!1

for some a > 0, then ~f , the even extension of f to R (which is in L1(R)) has spectrum
disjoint from (�a; a). the converse is also true. (The spectrum here means the support of the
distributional Fourier transform.) As an illustration, look at f(x) = cos ax (then, ~f(x) =
cos ax, x 2 R). Here F (y) is the Poisson integral of cos ax, evaluated at a point of the
imaginary axis, so F (y) = e�ay cos ax. Observe that in this case, f(x) has an essential sign
change on each interval in R

+ of length greater than �=a (that is, on each such interval it
assumes positive values, as well as negative values, on a set of positive measure). In a 1965
doctoral thesis, B.F. Logan, Jr. raised the question whether (10.1) implies an asymptotic lower
bound for the amount of oscillation of f . Namely, defining �(x) as the number (possibly
infinite) of points of (0; x), on each neighborhood of which f has an essential sign change,
he asked whether

(10.3)
lim inf
x!1 �(x)

x
>
a

�
;

For each f 2 L1(R), not identically zero and satisfying (10.2). He proved the answer is
affirmative if f also is assumed to be the restriction to R+ of an entire function of exponential
type. So far as I know, no one has proved (or disproved) this assertion without that last
hypothesis.
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In my paper [S] I remarked that, as a consequence of a recent theorem due to Baouendi
and Rothschild, the weakening of (10.2) to

(10.4) F (y) = O(y�n); y !1
for every positive integer n implies the (weak) oscillation result: f has an essential sign
change on (b;1) for every b > 0.

Certain questions now almost pose themselves: Suppose F (y) has, as y ! 1, a rate
of decrease intermediate between (10.2) and (10.4) (e.g., F (y) = O(e�y

t

) for some t with
0 < t < 1.) Can one assert anything about the frequency of sign changes of f , beyond what
already follows from (10.4)?

A further avenue of generalizations appears when we observe that (10.1) is a convolution
on the group R+ (with respect to the Haar measure dx

x
). After a logarithmic variable change it

becomes a usual convolution on R, with the “kernel”K(x) := (2=�)(cosx)�1 (details in [S]).
Thus, all the questions we have raised so far can be put in the form: Deduce from the rate of
decay at +1 of g ?K, for some g 2 L1(R), lower bounds for the (asymptotic frequency of)
essential sign changes of g. Once this standpoint is taken, one can raise these questions for
other kernels, like K(x) = e�x

2

.
One final remark: It is a corollary of the result that (10.2) implies disjointness of spec-

trum ~f from (�a; a), that: If (10.2) holds for every a > 0, then f vanishes a.e. This result
predates Logan’s work, and is a special case (after transformation from R

+ to R by the loga-
rithmic variable change) of general results due to I.I. Hirschmann, Jr. from 1951. We might
express matters thusly: for some class of kernels in L1(R), Hirschmann found the critical
rate at which a convolution of a nontrivial function in L1(R) with this kernel may decay at
1 (i.e., faster decay is impossible). There is some evidence that substantial decay implies
corresponding oscillatory behavior; this seems a promising and mostly unexplored area.
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11. The Problem

Direct Methods for crystal structure determination are based on mathematical relations,
so called phase relations, between the moduli (observed by diffraction experiments) and the
(unknown) phases of the Fourier coefficients E(H) of the periodic electron density �(r). The
latter can be approximated by one electron quantum mechanical wave functions  (r):
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(11.1) �(r) = j  (r)2j ( FT ) E(p) = 	(p) �	(�p)�

 ( FT ) 	

A question arises then, whether it is possible to obtain phase relations from fundamental
Quantum Mechanics. We show below that the Schrodinger equation in Fourier (momentum)
space, written below in appropriate atomic units, provides a basis for such relations:

Direct space Momentum space

(11.2) �� (r)=2 + V (r) (r) = "0 (r)( FT ) p2	(p)=2 +W (p) �	(p) = "0	(p)

with V ( FT ) W
For a periodic crystalline structure the convolution integral in momentum space is re-

placed by a discrete summation and eq. (2) is re-arranged as (3). We see then (with an
eigenvalue "0 < 0 ) that the phase of the wave function 	(p) is invariant under the potential
(convolution) operator W(p)� :

(11.3) (H2=2� "0)	(H) = ��KW (K) 	(H �K)

The next key remark is that the Fourier Coefficients W(K) of the potential function V(r)
are identical to the crystallographic expression - Z

p
N E(K) / K2. For a unit cell containing

N identical atoms of atomic number Z we have, as shown in Appendix:

(11.4) W (K) = �ZpNE(K)=K2

Eq. (4) is the key relation linking the Quantum Mechanical potential function to the
diffraction experiment for a crystal. Thus eq. (3) is written as (5), as shown in Appendix

(11.5) (H2=2� "0)	(H) = Z
p
N�KE(K)	(H �K)=K2

(11.6) E(H) = �K	(K)	�(K �H)

The pair of eq. (5) and (6) forms a system of self consistent equations, that is a usual
procedure in Quantum Mechanics. They provide the physical basis of the TWIN algorithm
developed for crystal structure determination (Hountas, A. and Tsoucaris, G. (1995) Acta
Cryst. A51, 754-763; see also: J. Navaza and G. Tsoucaris, in Phys. Rev. (1981); G.
Berthier et al. in J. Quantum Chemistry, 1996, p. 195-199). The final form (5) of the
Schrodinger equation in momentum space has a strong similarity with one of the fundamental
phase relations of Direct Methods:

(11.7) Phase of E(H) = Phase of [�KE(K)E(H �K)]
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Note that the positive factor 1/K2 in eq. (5) plays the role of a weighting factor for each
contributor E(K) 	(H-K) in the summation, that is a usual technique in Direct Methods.

The similarity becomes closer with a further approximation related to the classical Linear
Combination of Atomic Orbitals LCAO method:
	(H) = c E(H) with a known constant c > 0.

In conclusion, we have shown a close relation between a fundamental formula in Direct
Methods (obtained by Probability theory applied to the FT of the electron density of a crystal)
and the Schrodinger equation in momentum (i.e. FT) space. We further note that the FT
between position and momentum is a central notion in Quantum Mechanics. It corresponds
to a kind of ”built in” feature of Quantum Mechanics and constitutes the fundamental link
between the position and the momentum of a quantum mechanical particle, well known as
the Uncertainty Principle.

Note: The above presentation holds for a simplified model of electrons moving indepen-
dently to each other (no interelectronic interaction) in the potential created by the nuclei of
the crystal. Such an approximation is of course inappropriate for a correct quantum descrip-
tion of molecular orbitals, but it is sufficient for the determination by Direct Methods of
approximate phases of the Fourier coefficients EH (with observed moduli).

12. Appendix

The electron-nuclei attractive potential for N atoms of atomic number Zj at positions rj
is (in atomic units):

V(r) = - �j Zj / jr - rjj with r 2 R3

If r plays the role of time and K 2 R3 that of frequency, then the FT at K of V(r) is :

WK = - �j [ Zj exp ( 2� i K. rj ) ] / K2

reminding that in 3D we have:

1/jrj ( FT ) 1=jKj2

Note that for simplicity the above notation of modulus for the 3D vectors r and K has
been omitted throughout the text.

The Fourier coefficients EK (so called normalized structure factors) involved in diffrac-
tion experiments have a similar expression apart for the (positive) factor 1/K2 . Indeed, the
FT at K of N identical atoms -considered as Dirac masses 1/

p
N at positions rj - is given by:

EK = �j [ exp ( 2� i K. rj ) ] /
p

N

For atoms of atomic number Z, eq. (4) follows.


