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Université de Paris-Sud
Bahman.Saffari@math.u-psud.fr

ABSTRACT. Most of the “extremal problems” of Harmonic (or Fourier) Analysis
which emerged before the year 2000 were actually born in the twentieth century, and
their emergences were scattered throughout that century, including the two world war
periods. A great many of these problems pertain to polynomials, trigonometric poly-
nomials and (finite) exponential sums. Writing a reasonably complete monograph on
this huge subject (even if we choose to restrict it to polynomials only) would be a
monumental task, although the literature does indeed contain some valuable mono-
graphs on various aspects of the subject. The present text just touches upon a number
of extremal problems on polynomials and trigonometric polynomials, with the hope of
expanding this same text in the near future to a much larger version, and ultimately to
a “reasonably complete” monograph (but only with the help of other mathematicians.)

The theory of polynomials on the unit circle is, of course, part of classical Fourier
Analysis, studied with the tools of real and complex analysis. But it also leads to
studying polynomials on the (cyclic) finite subgroups of the unit circle, and this is part
of Fourier Analysis on finite groups. In many ways this leads to cyclotomy, which is
part of Number Theory and Algebra. Also, some combinatorial designs (cyclic dif-
ference sets) show up in connection with this study. Thus the analysis of polynomials
and trigonometric polynomials, even in one single variable, is at the crossroad of many
important areas of contemporary mathematics. It is also much connected with some
areas of engineering, such as signal processing.
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1. Introduction
Whatever is worth doing is worth doing badly

Gilbert Keith Chesterton

Everybody writes, nobody reads
Paul Erdös

I have borrowed from Z. A. Melzak’s excellent book “Companion to Concrete Mathematics”
(volume II) [26] the first of the above two epigraphs: “Whatever is worth doing is worth doing
badly”. Indeed this sentence is a most relevant epigraph for the present paper, and even more
so for any attempt to write a fairly complete monograph on the topics touched upon in this
paper: I shall explain this in some detail in Section 1.2 (on the “peculiarities and aims of this
paper”). The second epigraph: “Everybody writes, nobody reads” is a frightening truth so
concisely enunciated by the great Paul Erdös (1913–1996), and seems to be an explanation
for a good many of the evils that are infecting current science research, whether pure or
applied. More about this later.

1.1. A little history

Let me start with brief historical remarks concerning (only the origins of) the subject:
“extremal problems on polynomials and trigonometric polynomials: a century of progress”,
as this was the (much too ambitious) initial title I had given the organizers of this ASI, before
toning it down to the present title.

To the best of my knowledge (at the time this paper is being written, i.e., in the first
week of November 2000), the subject of “extremal problems on polynomials and trigono-
metric polynomials”, or at least the analytic theory of this subject, seems to find its main
roots in two (somewhat distinct) fertile grounds: on one hand the nineteenth century the-
ory of trigonometric and Fourier series, and on the other hand the nineteenth century theory
of approximation and interpolation. The discrete aspects of the subject are much related
to number theory and can even be tracked down (somewhat loosely) to the time of Gauss
and Lagrange. But the century-old golden age of the subject seems to have really started
around 1900 (precisely in 1889 and in 1911) with two totally independent major results: first
Markov’s inequality, proved in 1887 in a very special case by the chemist Mendeleiev [27]
and in 1889 by his mathematician friend A. A. Markov [25] in the general case, and then
Bernstein’s inequality (proved in 1911 by S. N. Bernstein [3] in a somewhat weaker form
than what is presently known as “Bernstein’s inequality”.)

Markov’s inequality (in its modern formulation) says that

(1.1) kP 0k[�1;1] 6 n2kPk[�1;1]
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whenever P (X) =
P

n

k=0 akX
k 2 C [X] is a polynomial with complex coefficients, P 0(X) is

its derivative, and

(1.2) kPk[�1;1] := max
�16x61

jP (x)j:

(1.1) is an equality if we take P (X) = T
n
(X) where the Chebishev (or Tchebyshev) poly-

nomial T
n
(X) is defined by cosnu = T

n
(cos u). Markov’s inequality had been proved in

the special case n = 2 as early as 1887 by the chemist Mendeleiev who studied it in con-
nection with a problem on substances dissolved in a liquid [27]. He then mentioned it to
A. A. Markov who became very interested and proved [25] the general case of (1.1) shortly
after Mendeleiev’s work [27]. For more historical details, see for example [31] or [32].

Unlike Markov’s inequality (which, as we saw, originated from Mendeleiev’s research in
chemistry), Bernstein’s inequality originated from pure mathematics (approximation theory).
Indeed, at the beginning of the twentieth century, the Belgian mathematician De la Vallée
Poussin [11] asked whether any piecewise linear continuous function defined on a compact
interval of R could be approximated by polynomials of degree nwith a (uniform) error o(1=n)
as n ! 1. With the less drastic error O(1=n), the (affirmative) answer had been given by
De la Vallée Poussin himself. In a celebrated memoir (which was awarded a prize by the
Royal Academy of Belgium on 15 December 1911), S. N. Bernstein [3] answered De la
Vallée Poussin’s question negatively: He proved that the best (uniform) approximation of the
function jxj on [�1; 1] by a polynomial of degree 2n, (n > 1), lies between

p
2�1
4

� 1
2n�1 and

2
�

� 1
2n+1

. Bernstein’s proof of this theorem heavily uses the following inequality which he
proves in the same memoir [3]: Whenever P (X) =

P
n

k=0 akX
k 2 C [X],

(1.3) jP 0(x)j 6 np
1� x2

kPk[�1;1] (�1 < x < 1):

Actually, Bernstein [3] proved (1.3) only for P (X) 2 R[X], but the extension of (1.3) to
P (X) 2 C [X] is straightforward: Indeed, if P (X) 2 C [X], put Q(x) := <(P (x)) for �1 6
x 6 1. Choose � 2 R so that ei�P 0(x)

p
1� x2 attains the maximum kP 0(x)

p
1� x2k[�1;1]

at, say, x = x0. Then

kP 0(x)
p
1� x2k[�1;1] = ei�P 0(x0)

q
1� x20

= Q0(x0)
q

1� x20 6 nkQk[�1;1] 6 nkPk[�1;1];
as claimed.

Putting kfk1 := max
t2R jf(t)j where f(t) is a real trigonometric polynomial

(1.4) f(t) = A0 +
nX

k=1

(A
k
cos kt +B

k
sin kt);
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the inequality

(1.5) kf 0k1 6 nkfk1
(where equality holds if and only if f(t) = A cosnt + B sinnt) is nowadays known as
“Bernstein’s inequality” although Bernstein never proved this result. Let us explain this. The
change of variable x = cos t shows that any real cosine polynomial

(1.6) f(t) =
nX

k=0

A
k
cos kt

can be written in the form f(t) = P (cos t) with P (X) 2 R[X] as in (1.3), and vice versa.
Thus, apart from the equality case, (1.5) is indeed equivalent to (1.3) in the case when f(t)
is a cosine polynomial (1.6). So Bernstein [3] did state and prove (1.5) for all cosine poly-
nomials. Then by a quite complicated (although very interesting) argument he showed that
from the truth of (1.5) for all cosine polynomials one can deduce the truth of (1.5) for all sine
polynomials of the form

(1.7) f(t) =
nX

k=1

B
k
sin kt:

Actually, his argument, as presented in [3], had a gap that Bernstein did correct in his
famous book [4] published fourteen years later, in 1926.

Now, having proved (1.5) for all cosine and sine polynomials, Bernstein could only con-
clude that in the general case of “mixed” real-valued trigonometric polynomials (1.4) one
has

(1.8) kf 0k1 6 2nkfk1:
This is not as good as (1.5), and equality in (1.8) never holds unless f(t) � 0.

Who supplied the first proof of “Bernstein’s inequality” (1.5) for “mixed” trigonometric
polynomials (1.4)? In his 1926 book [4], Bernstein stated that the first proof was supplied by
E. Landaw [20] in a personal letter he sent Bernstein shortly after the publication of Bern-
stein’s original memoir [3]. In the book [4] Bernstein did give Landau’s proof, which consists
of a simple and elegant argument showing that the truth of (1.5) for all sine polynomials (1.7)
in fact implies the truth of (1.5) for all “mixed” polynomials (1.4). Thus Bernstein had done
most of the hard work by proving (1.5) for all sine polynomials, but had missed Landau’s
simple argument leading to the general case! (Such things happen quite often.)

So Landau’s 1912 proof of “Bernstein’s inequality” (1.5) remained unpublished until
1926, when Bernstein’s book [4] appeared. However, in a 1914 paper devoted to conjugate
trigonometric series, Fejér [15] states the truth of Bernstein’s inequality (1.5) in the general
case, and gives a very important application of it. Fejér’s proof of Bernstein’s inequality ap-
peared two years later, in 1916, in a paper of Fekete [16] who indeed does attribute the proof
to Fejér. It is thus plausible that the first proofs of “Bernstein’s inequality” (1.5) for all real
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“mixed” trigonometric polynomials (1.4) were found independently by Landau [20] and by
Fejér [15], at about the same time, and that both of them communicated their proofs privately
to fellow mathematicians (Bernstein and Fekete, respectively.) However, note that in the same
year 1914 when Fejér’s paper [15] appeared, the brothers M. Riesz [35] and F. Riesz Riesz,
F. [34] published two new proofs of Bernstein’s inequality (1.5), entirely different from each
other and entirely different from those of Landau [20] and of Fejér [15].

Nowadays there are numerous generalizations, extensions and refinements of (1.5) (some
really profound, others less), but most of which are simply called “Bernstein’s inequality”
or “Bernstein type inequality”. A big treatise would not suffice to present all of them. I
recall that about twenty years ago, around 1981, the late S. K. Pichorides (1940–1992) and
myself thought of writing a fairly complete monograph just on the sup-norm versions of the
Markov-Bernstein type inequalities, and in view of the enormity of the literature, we gave up.

This being said, what is the “most classical” statement (or, if we prefer, the “most widely
known” statement of “Bernstein’s inequality”? In other words, if we ask a random mathe-
matical analyst to tell us quickly what is meant by “Bernstein’s inequality”, what is he/she
likely to reply off the top of his/her head? In my opinion there are three such “likely” state-
ments. The first is the above inequality (1.5) for all real trigonometric polynomials (1.4). The
second is the extension of this same (1.5) to all complex-valued trigonometric polynomials of
the form

(1.9) f(t) =
nX

k=�n
a
k
eikt (a

k
2 C for all k = �n; : : : ; n)

(with equality in (1.5) now reached if and only if f(t) = aeint + be�int where a and b are
complex constants.) The third is the following: If

P (X) =
nX

k=0

a
k
Xk 2 C [X] and kPk1 := max

t2R

��P (eit)
�� ;

then

(1.10) kP 0k1 6 nkPk1
(with equality in (1.10) if and only if P (X) = aXn.)

Now, are the above three statements of “the classical Bernstein inequality” equivalent?
(By “equivalent” I mean, in the present context, that each can be deduced from the others in
a quite easy manner. Otherwise I am aware that any two true mathematical statements are
equivalent!) The answer is that the first two are indeed equivalent, but that (1.10) is a weaker
result. Indeed, the first statement is an obvious special case of the second, but the second is
also a straightforward consequence of the first. (Here is a simple proof from G. G. Lorentz’s
book [23], by the same argument as the one presented right after (1.3) in this introduction,
but I do not know who gave it first: With f(t) of the form (1.9), select � 2 R so that ei�f 0(t)
attains the value kf 0k1, say for t = t0. Now g(t) := <(ei�f(t)) is of the form (1.4), so
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kf 0k1 = ei�f 0(t0) = g0(t0) 6 kgk1 6 kfk1. The equality case is ignored in [23], but this
is not hard either.) Now the third statement (1.10) is obviously a consequence of the second,
and it is also (easily) derived directly from the first on page 45 of Bernstein’s book [4]. Yet
I do not know of any simple way of deriving the first or second statement from (1.10). On
the other hand (1.10), as well as its extensions to all Lp norms with p > 1, have direct proofs
much simpler than any of those available for the first two statements. The reader can work
them out herself or look them up, for example, in [32]. Here is yet another way of seeing that
the first two statements (1.5) are stronger than (1.10). Indeed they imply

(1.11) jP 0(eit)j 6 n

2

�kPk1 + jP (eit)j�
(as easily checked, or see for example [17]), and (1.11) is obviously a deeper form of (1.10).

Does Markov’s inequality (1.1) compare, depth-wise, to any (“classical” form of) Bern-
stein’s inequality, although it was discovered utterly independently and twenty-two years
earlier, as we saw? Using Bernstein’s original theorem (1.3) and a nice theorem of Schur
(Theorem 6, Chapter 3 of Lorentz’s book [23]), we see that Markov’s inequality is a corol-
lary to (1.3) and thus to (1.5) for all cosine polynomials, but modulo Schur’s theorem which
is not trivial (although not very difficult either.) Altogether we may rate Markov’s inequality
(1.1) at about the same level of depth as Bernstein’s inequality (1.5) for all trigonometric
polynomials of the form (1.4) or (1.9).

The above inequalities of Markov and Bernstein (together with their equality cases) are
typical examples of extremal problems, as they are equivalent to the problems of finding the
maximum of kP 0k[�1;1]=kPk[�1;1] and of kf 0k1=kfk1 where deg P 6 n and deg f 6 n,
(P 6� 0 and f 6� 0). I chose (the earliest versions of) the Markov-Bernstein inequalities as
typical illustrations of extremal problems for two main reasons: 1) They were among the first
(but certainly not the very first) that marked the beginning of the century-old “golden age”
(twentieth century.) 2) They have been the starting point of an enormous literature concerning
their generalizations, extensions, refinements and applications. Their usefulness in numerous
areas of mathematics, physics and engineering has been extraordinary, ever since they were
discovered. See for example [1], [8], [32] and many other good references.

This being said, there are at least two different meanings to the expression “extremal
problem”:

1. One meaning is obviously the search for (attained or unattained, global or local)
suprema and/or infima of real-valued functions defined on a set (of functions, of poly-
nomials, of numbers, of measures, etc.). With this first acceptation, there is a consid-
erable overlap between the subject of “extremal problems” and that of “inequalities”
(or rather “optimal inequalities”).

2. Another one is a problem pertaining to properties of such suprema and infima (whether
local or global, etc.), for example that of their distribution. This will not be discussed
in this paper, but hopefully will be in [39].
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The Bernstein-Markov inequalities are typical examples of polynomial extremal problems
which find their roots in the nineteenth century theory of approximation and interpolation.
But the majority of twentieth century polynomial extremal problems find their roots in the
nineteenth century theory of trigonometric and Fourier series. We will (briefly) mention
a few examples in this paper. The reader should, however, first read the next section on
“peculiarities” of this paper.

1.2. Peculiarities and aims of this paper

I first explain in a page or two why this paper is a quite peculiar one. Its aims will then
follow logically.

In May 2000, a few weeks before this July 2000 ASI, I realized that my original title
“Extremal problems on polynomials and trigonometric polynomials—a century of progress”
was too ambitious and unrealistic for a 2 1

2
-hour tutorial lecture. So I toned it down to the

present title. As for my oral lecture, I personally found it unsatisfactory, but in view of the
audience’s enthusiasm it seemed successful. I do not consider this to be my personal success
but rather the merit of this delightful subject itself, where the problems and theorems are
most often simple to state but the proofs are sometimes very hard and profound, sometimes
easy and straightforward. I hope to return to this “instability phenomenon” of mathematical
statements (with its sometimes very sad consequences) either at the end of this paper, or more
likely in [39].

I intended to write up my lecture for the ASI proceedings but a major illness and accident
in my family left me no free time in August and September of 2000. Thus I missed the
submission deadline and decided to write instead a much longer version, perhaps a whole
monograph. But J.-P. Kahane (who was my teacher and whose judgment I respect) pointed
out that a monograph on such a huge subject might take years for a single person, and in
addition the author might be tempted to stop the write-up and work on the fascinating open
problems of this subject. So Kahane advised me to request a deadline extension from the
editor and try to write the ASI paper anyway.

As the editor granted such extension, I could use a week or so of peace, in the house of a
friend in Newport, Rhode Island, to produce the present paper at the beginning of November
2000. So this text was written within a very short period, when I had no access to a library
nor to my personal notes and documents either (as I had left nearly all of them in Europe),
and also the editor had imposed a 30-page bound on the length of the paper. Thus I had no
choice but to write a “highly imperfect” paper, with the following features (some of which
the reader might interpret as the “aims” of this paper):

1. A number of topics are touched upon but all of them very briefly, and most of them
quite superficially. But I intend to write soon an extended version [39] of this paper.

2. All of the topics are among those I had wished to mention anyway, but the “choice”
of them (in this paper) is nowhere near any optimal order of priority. The choice of
topics here is by no means the result of thoughtful considerations, but rather the result
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of time limitations only: To write this paper in the short alloted time, I had to write
down whatever would come to my mind after some very quick thinking, in a nearly
random way. Had I written this paper one week earlier or one week later, the choice
of topics would have been quite different. However, in the extended version [39], not
only the same topics will be treated in more detail and depth, but also other topics will
be added.

3. Although many nice topics are not even mentioned here, all those touched upon in this
paper are subjects that, I for one, do consider extremely interesting. All of them can
be described as “Erdös-style harmonic analysis”. Proofs are omitted (save for a couple
exceptions), due to time and space limitations. Many of the topics mentioned concern
my own results and conjectures, usually unpublished (and even unwritten.) This is
again simply due to time limitations: After all, my own results (whether written or
not) where the most accessible ones under such “space-time” pressure!

4. No systematic history of any of the topics mentioned will be presented in this paper,
but hopefully this will be done (to some extent) in the extended version [39], at least
for some of the topics. However, a number of historical points or anecdotes will be
encountered here. One of my personal obsessions is historical accuracy and honesty,
although I am not always successful at that. It is a very unfortunate fact that his-
torical accuracy and honesty is not widespread among mathematicians, whether due
to ignorance, negligence or malevolence. Authors very frequently reproduce, in their
publications, historical errors or lies they have read elsewhere, without checking any-
thing, thus perpetuating errors or lies. Such sad things are often unintentional, but too
often intentional also. I have had my fair share of this kind of historical negligence,
but it was always unintentional.

5. What was just said about historical points can also be said about references, and the
way erroneous or inappropriate references are perpetuated and carried from publication
to publication. Despite my good intentions in this respect, I cannot guarantee that all
the references in this paper are correct, in view of the circumstances under which this
paper was written. Quite often, I do not even give any reference at all to a result I am
quoting only by relying on my memory, as I do not have the reference on my desk at
the moment of writing. (This is the case even with my own papers!)

6. In conclusion, this paper is not to be viewed as a survey of extremal problems, even in
a very limited sense. Its main function is to serve as a “memorandum” for myself with
a view to the extended version [39]. The reader’s criticisms, comments (and whatever
information he/she could give me) are welcome and will be gratefully acknowledged.

2. Back to Bernstein’s inequality

Two of the most useful refinements of Bernstein’s inequality are Szegö’s inequality [42]
proved in 1928 and the Schaake-van der Corput inequality [40] proved in 1935. The latter
was quickly noted to be a weaker form (and a corollary) of Szegö’s inequality, but has a
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usefulness of its own. Both are among the very few results that I will prove in this paper.
These proofs will not be those of the original authors, as they were quite complicated, but
proofs of my own (as they are the simplest ones I know of.)

2.1. Statement of the Schaake-van der Corput inequality

THEOREM 2.1 (Schaake & van der Corput [40]).
For any real trigonometric polynomial

(2.1) f(t) = A0 +
nX

k=1

(A
k
cos kt+B

k
sin kt)

we have, for all t 2 R , the following refinement of Bernstein’s inequality (1.5):

(2.2) (f 0(t))
2
+ n2 (f(t))2 6 n2kfk21:

In other words, we have the identity

(2.3) kf 02 + n2f 2k1 = n2kfk21:

Remarks on the equality case of (2.2). Although the inequality (2.2) is a refinement of
Bernstein’s inequality (1.5), the equality cases of these two inequalities are very different in
nature. For Bernstein’s inequality (1.5), the assumption that jf 0(t0)j = nkfk1 for at least one
point t0 2 R implies that f(t) is a sinusoidal function: f(t) = A cosnt+B sinnt. But for any
(arbitrary) real trigonometric polynomial f(t) of the form (2.1), the Schaake-van der Corput
inequality (2.2) is obviously always an equality at every t0 2 R where jf(t0)j = kfk1. Also
(2.2) is an equality at every t 2 R whenever f(t) � A cosnt + B sinnt or f(t) � constant,
and the converse of this is also trivially true. However one can easily show that if (2.2)
is an equality for at least 2n distinct points of the semi-open interval [0; 2�[, then either
f(t) � A cosnt + B sinnt or f(t) � constant. In this last remark the number 2n is optimal,
(i.e., minimal): One can find non-sinusoidal and non-constant real trigonometric polynomials
of the form (2.1) for which (2.2) is an equality at 2n � 1 distinct points of the semi-open
interval [0; 2�[.

2.2. Saffari’s proof of the Schaake-van der Corput inequality

We will obtain (2.2) as a corollary to Bernstein’s inequality (1.5) together with its equality
case, that is, kf 0k1 = nkfk1 if and only if f(t) is a sinusoidal function of the form

(2.4) f(t) = A cosnt +B sinnt:

Our proof is by contradiction. Let V
n

denote the vector space (on the field R) of all real
trigonometric polynomials of the form (2.1), with degree 6 2n. For any f 2 V

n
nf0g (i.e.,
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f 6� 0), define:

(2.5) H(f) :=
kf 02 + n2f 2k1

n2kfk21
and let

(2.6) Hmax := max
f2Vnnf0g

H(f)

To prove that the maximum Hmax defined by (2.6) indeed exists, first note that V
n

is a
finite-dimensional space over R (since dimR Vn = 2n + 1). If V

n
is equipped with the norm

topology, then (2.5) defines a continuous mapping H from V
n
nf0g into R: Indeed, since

dimR Vn is finite, the (linear) differentiation operator f ! f 0 is continuous on V
n
, and so the

mapping f ! f 02 + n2f 2 is a continuous function from V
n

into V2n�1. Also all the norms
(and in particular the sup-norm function'! k'k1) are continuous on the finite-dimensional
vector spaces V

n
and V2n�1, (dimR V2n�1 = 4n � 1), so the mapping H defined by (2.5) is

continuous as claimed. Also H(�f) = H(f) for all � 2 R with � 6= 0, hence the maximum
defined by (2.6) is the same as the maximum of H(f) when f is restricted to the (compact)
unit sphere of V

n
for the sup-norm metric, and this last maximum is indeed attained.

Obviously Hmax > 1 (since H(f) > 1 for every f 2 V
n
nf0g), and the Schaake-van der

Corput inequality we wish to prove is equivalent to the equality Hmax = 1. To prove this by
contradiction, we suppose henceforth that

(2.7) Hmax > 1:

Let  2 V
n
nf0g be some trigonometric polynomial of the form (2.1) for which

(2.8) H( ) = Hmax:

We first note that  is not a constant function, since otherwise  0 � 0 and so, by (2.5),
H( ) = 1 contrary to our assumption (2.7). Thus  0 6� 0, i.e.,  0 2 V

n
nf0g, hence we can

consider

(2.9) H( 0) =
k 002 + n2 02k1

n2k 0k21
:

Let the trigonometric polynomial ( 0(t))2 + n2 ( (t))2 reach its absolute maximum at
t0 2 R:

(2.10) ( 0(t0))
2
+ n2 ( (t0))

2 = k 02 + n2 2k21:
So its derivative vanishes at t0:

(2.11) 2 0(t0) 
00(t0) + 2n2 (t0) 

0(t0) = 0:
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By (2.9) we cannot have  0(t0) = 0, otherwise k 02 + n2 2k1 = n2 ( (t0))
2 by (2.10), and

so we would have

H( ) =
k 02 + n2 2k1

n2k k21
=
n2 ( (t0))

2

n2k k21
6 1

which is impossible in view of (2.7) and (2.8). Thus  0(t0) 6= 0, so upon dividing both sides
of (2.11) by  0(t0) we get

(2.12)  00(t0) + n2 (t0) = 0:

Note, incidentally, that our observation  0(t0) 6= 0 is another way of seeing that  0 6� 0 so
as to justify (2.9). Finally, since for sinusoidal functions f(t) of the form (2.4) we obviously
have H(f) = 1, it follows from (2.7) and (2.8) that  (t) is not a sinusoidal function of the
form (2.4). Therefore, by the equality case of Bernstein’s inequality,

(2.13) k 0k1 < nk k1:
We now have all we need to find a lower bound for (2.9) which will yield the desired contra-
diction to (2.7). By (2.9) and the strict inequality (2.13),

H( 0) >
k 002 + n2 02k1

n4k k21
>

( 00(t0))
2 + n2 ( 0(t0))

2

n4k k21
=

n4 ( (t0))
2 + n2 ( 0(t0))

2

n4k k21
[by using (2.12)]

=
n2 ( (t0))

2 + ( 0(t0))
2

n2k k21
[upon dividing by n2]

=
k 02 + n2 2k1

n2k k21
[by (2.10)]

= Hmax: [by (2.8)]

Thus H( 0) > Hmax, which contradicts the maximality of Hmax defined by (2.6). There-
fore our assumption (2.7) leads to a contradiction, and thus we have Hmax = 1 and have
proved the Schaake-van der Corput inequality. �

2.3. Other proofs or reformulations of the Schaake-van der Corput inequality

I gave my own proof of the Schaake-van der Corput inequality as it is one of the simplest
ones I know, and certainly simpler than the original one [40]. Just relying on my memory at
the moment of this write-up, I think I know a good dozen different proofs of this inequality.
There might be many more in the literature. I hope to give some of them in [39]. In this
connection, here is an unfortunate anecdote: Just over twenty years ago, in the late 1970’s,
I found my above proof of the Schaake-van der Corput inequality and gave a seminar talk
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about it at Orsay. The following week the late S. K. Pichorides (1940-1992) talked in the
same seminar on a nice application of the Schaake-van der Corput inequality. Shortly after,
without Pichorides or myself knowing about it, two physicists happened to submit a joint
mathematical note to the French “Comptes Rendus de l’ Académie des Sciences” giving
a beautiful number-theoretic proof of the Schaake-van der Corput inequality (which they
believed to be a new result), and they had applications of this inequality to optics. Their note
was abruptly rejected by the referees (two mathematicians at Orsay, none of whom were J.-
P. Kahane or Y. Meyer), with the comment: “This result is not new, it is a recent theorem of
Saffari and Pichorides”. So much for the competence of such “referees”, who never bothered
to ask me or Pichorides. Only one year after, when I heard about this rejection, could I
tell those “referees” that the result actually went back to 1928 [42] but such a nice new
proof should not have been rejected. In [39] I will present the (unpublished) proof of those
physicists, and disclose their names.

Polynomial reformulation of the Schaake-van der Corput inequality (2.2). Let the
polynomial P (x) =

P
n

k=0 akX
k 2 C [X] be self-inversive, that is, a

n�k = a
k

for all
k = 0; 1; : : : ; n. Then the Bernstein inequality kP 0k1 6 nkPk1 can be improved to:

(2.14) kP 0k1 =
n

2
kPk1 (yes, equality!)

Proof. The truth of (2.14) when n is odd follows from the truth of (2.14) when n is even
by considering the even-degree polynomial P (z2). So, without loss, we may suppose n even,
n = 2m. The (real-valued) trigonometric polynomial f(t) := e�imtP (eit) is then of the form
(2.1), with degree m, hence upon writing P (eit) = eimtf(t) and differentiating both sides,
we get

ieitP 0(eit) = eimt (f 0(t) + imf(t)) ;

hence

(2.15)
��P 0(eit)

��2 = (f(t))2 +m2 (f(t))2 :

Thus (2.14) is indeed equivalent to (2.3). �

The above polynomial reformulation (2.14), like the original formulation (2.2), was re-
discovered by many people. Some of these proofs do shed new light on the subject, see [39].

2.4. “Self-improvement” of the Schaake-van der Corput inequality

This is an important topic, and we will see an application of it in Section 4. Let the real
trigonometric polynomial f(t) be as in (2.1), and consider the trigonometric polynomial (of
degree 6 2n� 1):

(2.16) f1(t) := (f 0(t))
2
+ n2 (f(t))2 :
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By (2.3) we have kf1k1 = n2kfk21. Applying the Schaake-van der Corput inequality (2.2)
to this f1(t) (with n replaced here by 2n� 1), we obtain

(2.17) (f 01(t))
2
+ (2n� 1)2 (f1(t))

2
6 (2n� 1)2kf1k21

which, on dividing by (2n� 1)2 and using (2.16), can be rewritten:

(2.18)
4 (f 0(t))2

(2n� 1)2
�
f 00(t) + n2f(t)

�2
+
�
(f 0(t))

2
+ n2 (f(t))2

�2
6 n4kfk41:

This is a refinement of (2.2). We can continue such improvements indefinitely, but they
become too complicated and, mostly, this method is very wasteful as it ignores the fact that
f1(t) > 0 while for non-negative trigonometric polynomials there is a better form of the
Schaake-van der Corput inequality than (2.2), namely inequality (2.19) below:

THEOREM 2.2 (The case of non-negative trigonometric polynomials).
If a trigonometric polynomial g(t) of the form (2.1) satisfies g(t) > 0 for all t 2 R, then for

all t 2 R

(2.19) (g0(t))
2
+ n2 (g(t))2 6 n2kgk1 � g(t):

Proof. Apply (2.2) to the polynomial f(t) := g(t)� 1
2
kgk1: �

Now, applying (2.19) to the non-negative trigonometric polynomial f1(t) given by (2.16),
we obtain for any (not necessarily non-negative) real trigonometric polynomial of the form
(2.1):

(2.20)
4 (f 0(t))2

(2n� 1)2
� (f 00(t) + n2f(t))

2

(f 0(t))2 + n2 (f(t))2
+ (f 0(t))

2
+ n2 (f(t))2 6 n2kfk21

which is a finer improvement of the Schaake-van der Corput inequality than (2.18). In turn,
there is yet an improvement of (2.20) for non-negative trigonometric polynomials. Actu-
ally there is a rather nice method for refining (2.20) indefinitely while obtaining expressions
which are not too complicated and also, in a sense, optimal. We will drop this matter here
but might return to it in [39] under the (weird-sounding but appropriate) term of “analytic
bootstrapping”. Let us also note that, just as for (2.14), the other variations and refinements
of the Schaake-van der Corput inequality can be reformulated in terms of algebraic polyno-
mials, whether self-inversive or not. Thus, for P (X) =

P
n

k=0 akX
k 2 C [X] not necessarily

self-inversive,

(2.21)
4

n2

�
d

dt

��P (eit)
���2

+
��P (eit)

��2 6 kPk21:

Proof. Divide both sides of (2.19) by n2g(t) and take g(t) = jP (eit)j2: �
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2.5. Elementary applications of the Schaake-van der Corput inequality

If f(t) is a real trigonometric polynomial of the form (2.1), then one can refine the trivial
inequality kfk2 6 kfk1 into:

(2.22) n�2kf 0k22 + kfk22 6 kfk21:
This is obtained by integrating (2.2) on [0; 2�]. �

Although we lost information in the integration process, and (2.22) is therefore weak and
wasteful, it is still useful and I hope to give some application of (2.22) in [39]. An even more
useful inequality is the following:

THEOREM 2.3. If g(t) is a non-negative trigonometric polynomial of the form (2.1), then
one can refine the trivial inequality kgk22 6 kgk1 � kgk1 into:

(2.23) n�2kg0k22 + kgk22 6 kgk1 � kgk1:
Equivalently, if P (X) =

P
n

k=0 akX
k 2 C [X] is a (not necessarily self-inversive) polynomial

with complex coefficients, then the trivial inequality kPk24 6 kPk22 � kPk21 can be refined
into:

(2.24) n�2
 ddt

�jP (eit)j2�
2

2

+ kPk44 6 kPk22 � kPk21:

Proof. To obtain (2.23) integrate (2.19) on [0; 2�]. Then take g(t) = jP (eit)j2 to obtain
(2.24). �

2.6. Szegö’s inequality

One year after the appearance of their 1935 paper [40] in which (2.2) was proved, Schaake
and van der Corput pointed out in a short note [41] that their result (2.2) was already contained
in (i.e., was a weaker form of) a more precise inequality published by Szegö [42] in 1928.
The statement of Szegö’s inequality is as follows:

THEOREM 2.4. Let f(t) be a real trigonometric polynomial of the form (2.1), and let ~f(t)
denote its conjugate trigonometric polynomial. Then, for all t 2 R,

(2.25) jnf(t)� ~f 0(t)j+
r

(f 0(t))2 +
�
~f 0(t)

�2
6 nkfk1 :

In this paper I will not give Szegö’s original proof of (2.25) but, in section 2.7 below, I
will give the (possibly new) simple proof by myself and the late S. K. Pichorides [36], via an
interpolation method. Yet it is conceivable that the Saffari-Pichorides proof of (2.25) (or a
similar one) is already in the literature.
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A few remarks before quitting this section 2.6. First, in (2.25) ~f 0(t) is the conjugate
function of the derivative f 0(t) and also the derivative of the conjugate function ~f(t), as these
are equal. So, no ambiguity here.

Another remark is that Szegö’s inequality (2.25) is finer than the Schaake-van der Corput
inequality (2.2) simply because, for all t 2 R,

(2.26)
q

(f 0(t))2 + n2 (f(t))2 6
���nf(t)� ~f 0(t)

��� +
r

(f 0(t))2 +
�
~f 0(t)

�2
:

To get (2.26), take x = nf(t), y = f 0(t), z = ~f 0(t) in the inequality

(2.27)
p
x2 + y2 6 jx� zj +

p
y2 + z2

which holds for all x; y; z 2 R and is just the ordinary triangle inequality for Euclidean norm.
Equality cases of Szegö’s inequality (2.25): One can see in several ways (e.g., from our

proof in the next section 2.7) that equality holds for all t 2 R if and only if f(t) is of the form

(2.28) f(t) = A0 + A cosnt +B sinnt;

i.e., for a wider class than the ones for the Schaake-van der Corput and Bernstein inequalities.
Also, for a given f(t), there are points t0 2 R (depending on f ) where equality holds in
(2.25). This discussion is interesting but we drop it in this paper.

A final remark: By throwing out
���nf(t)� ~f 0(t)

��� in (2.25), one obtains:

(2.29) (f 0(t))
2
+
�
~f 0(t)

�2
6 n2kfk21

or, equivalently,

(2.30) kP 0k1 6 nk<(P )k1
for all polynomials P (X) =

P
n

k=0 akX
k 2 C [X]. Both (2.29) and (2.30) had, of course,

been noted by Szegö (in [42] and elsewhere). They are also in Zygmund’s classical treatise
[44], together with their Lp generalizations, (p > 1), and therefore well known to a wide
public of present-day analysts. However, (2.2) (which, incidentally, does not imply (2.29)
nor is implied by it either) and (2.25) are not in Zygmund’s treatise [44] and thus are not as
widely known as they deserve. In [44], Zygmund does attribute (2.29) to Szegö and refers
to Szegö’s 1928 paper [42], yet the proof of (2.29) presented by Zygmund in [44] is not
Szegö’s original proof but another proof akin to one of the earliest proofs of Bernstein’s
inequality (1.5) by Marcel Riesz [35] (or to the interpolation method of section 2.7 below).
The last time I saw the late Professor Zygmund, in 1984, I asked him why he chose to include
(2.29) in his treatise [44] but not the similar (and even more useful) Schaake-van der Corput
inequality (2.2) nor the strong Szegö inequality (2.25) either. Zygmund replied that, until
my conversation with him about this matter, he had never heard of the inequalities (2.2)
and (2.25), and although he had quoted Szegö’s paper [42] in his treatise [44], he actually
had never taken a look at Szegö’s paper [42] (where (2.25) was originally proved). He had
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also not read some other papers quoted in his treatise [44], and in which (2.2) and (2.25)
were mentioned together with some extensions. At least Zygmund was perfectly honest and
candid in this respect. He was a good friend of Szegö, and the two did great joint research
(some of which was on polynomials, see [43]).

2.7. The Pichorides-Saffari proof of Szegö’s inequality

(Again, I note that our proof below might already be in the literature.)
The proof is based on the identity

(2.31)
nX

h=1

F
n�1

�
2h� � �

n

�
eik(2h���)=n = n� k + ke�i�

for all � 2 R and all integers k, n such that 0 6 k 6 n, where F
n�1(x) denotes the Fejér

kernel of degree n� 1:

(2.32) F
n�1(x) :=

nX
r=�n

�
1� jrj

n

�
eirx =

1

n
�
�
sin nx

2

sin x

2

�2

:

To check (2.31), use the middle sum in (2.32) with x = (2h���)=n, plug this expression
into the left hand side of (2.31) and change the order of summation, then note that the new
inner sum is always zero except for r = �k and for r = n� k.

Another form of (2.31) is

(2.33)
nX

h=1

F
n�1

�
2h� � �

n

�
eik(2h���)=n = n� jkj+ jkj cos�� ik sin�

for all � 2 R and all integers k, n such that �n 6 k 6 n.
[For k > 0, (2.33) is the same as (2.31); for k < 0 take the complex conjugates on both

sides of (2.31)].
On taking k = 0, we have the following useful identity:

(2.34)
nX

h=1

F
n�1

�
2h� � �

n

�
= n (for all � 2 R):

Now, for any integer k with 1 6 k 6 n, multiply both sides of (2.31) by ei(kt+'k) (with
t; '

k
2 R) and then take the real parts, to get

nX
h=1

F
n�1

�
2h� � �

n

�
cos

�
kt + '

k
+ k � 2h� � �

n

�
=

= (n� k) cos (kt+ '
k
) + k cos (kt+ '

k
� �):(2.35)
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We now have all we need to prove the interpolation formula:

nf(t)� ~f 0(t) + ~f 0(t) cos�� f 0(t) sin� =

=
nX

h=1

F
n�1

�
2h� � �

n

�
f

�
t +

2h� � �

n

�
(2.36)

for any real trigonometric polynomial f(t) of the form (2.1). Indeed, write f(t) in the more
convenient form

(2.37) f(t) = A0 +
nX

k=1

r
k
cos (kt + '

k
); (r

k
=
q
A2
k
+B2

k
)

and note that, by linearity of the differentiation f ! f 0 and of the Hilbert transform f ! ~f , it
suffices to check (2.36) for f(t) � 1 and for f(t) � cos (kt+ '

k
), (1 6 k 6 n). For f(t) �

1, (2.36) reduces to (2.34). For f(t) � cos (kt+ '
k
), we have f 0(t) = �k sin (kt+ '

k
) and

~f 0(t) = k cos (kt+ '
k
), so that (2.36) reduces to (2.35). Thus (2.36) is proved.

The desired inequality (2.25) follows from (2.36). Indeed by (2.32) (which implies
F
n�1(x) > 0) and (2.34), for any fixed � and t 2 R , the modulus of the right-hand side

of (2.36) is majorized by
nX

h=1

F
n�1

�
2h� � �

n

�
� kfk1 = nkfk1:

Now, for any fixed t 2 R , the maximum modulus of the left-hand side of (2.36) (as �
varies) is

jnf(t)� ~f 0(t)j+
r�

~f 0(t)
�2

+ (f 0(t))2

and the proof of (2.25) is complete. �

2.8. Some sources

The very important subject of Markov-Bernstein type inequalities deserves a reasonably
complete monograph. Pending the writing of such a book, which is no easy task, here are just
a few good sources of information (among many others):

1. The 1983 book “Les inégalités de Markoff et de Bernstein” by Q. I. Rahman and
G. Schmeisser [31] and its good list of references. This (rather short) mimeographed
book is written in a delightfully reader-friendly style reminiscent of those of S. N.
Bernstein [4] and C. de La Vallée Poussin [12]. A modest knowledge of French
should be enough for reading this book.

2. P. Borwein and T. Erdelyi (either separately, or together, or with other co-authors) have
many publications on this subject (and, by the way, on several other topics pertaining to
the themes of this paper and to those of [39]). Most preprints of their publications can
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be downloaded from the authors’ well organized home pages at the Web sites of Simon
Fraser University [9] and Texas A&M University [14], respectively. Although these
reprints are not always the final forms of the publications and do sometimes contain
typos, the papers are of a high level and also good sources of references (modulo a few
errors).

3. Many Ph. D theses and other publications on this subject produced in the province of
Québec, Canada, where there is a tradition of this type of studies. I have lost track of
what is being done there, but the reader could look at the university Web sites and at
the publication lists of “Presses de l’Université de Montréal.”. One example (among
others) is the 1983 Ph. D. thesis of C. Frappier [17].

3. Some types of flat polynomials

If a polynomial P (X) =
P

n

k=0 akX
k 2 C [X] has at least two non-zero coefficients,

then it cannot be “perfectly flat” (i.e., have constant modulus) on the whole unit circle: The
relation

(3.1) jP (eit)j = constant (for all t 2 R)

is impossible. To see this, call a
r
Xr (resp. a

s
Xs) the non-zero term of P (X) of lowest

(resp. highest) degree, (0 6 r < s 6 n), and note that jP (eit)j2 is a non-zero trigonometric
polynomial with leading term 2ja

r
a
s
j cos (mt + � � �) where m = s� r > 0, a

r
= ja

r
jei�,

a
s
= ja

s
jei� .

However, for a variety of classes of non-monomial polynomials P (X), the ideal (and
impossible!) “perfect flatness” situation (3.1) can still be approximated in various ways. The
diverse notions of “flatness” of a polynomial (or, more frequently, of a sequence or a class of
polynomials) often refer to the various ways of approximating the ideal situation (3.1). For
example, given a subset � (usually a subgroup) of the unit circle, if

(3.2) jP (g)j = constant (for all g 2 �)

then we say that the polynomial P (X) is perfectly flat on the set �. There are some non-trivial
open problems on that notion of perfect flatness, and we will briefly see a glimpse of them
in section 3.1 below. Another example of a flatness requirement is to look for polynomials
P (X) =

P
n

k=0 akX
k 2 C [X] for which the moduli ja0j; ja1j; : : : ; janj are given non-negative

numbers and for which the sup-norm kPk1 := max
t2R jP (eit)j is either as small as possible

(extremal problem) or satisfies some smallness requirement. Thus, if we impose ja
k
j = 1

for all k = 0; 1; : : : ; n (or even without this restriction), the previous problem is equivalent
to some smallness requirement on the “crest factor” (or “peak factor”) kPk1=kPk2 where
kPk2 denotes the L2-norm:

(3.3) kPk2 :=
�

1

2�

Z 2�

0

jP (eit)j2dt
�1=2

=

 
nX

k=0

ja
k
j2
!1=2

:
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Actually, many flatness problems for polynomials can be expressed in terms of compari-
son of two norms in the vector space of polynomials of degree 6 n. We shall take brief looks
at some examples in the sequel.

3.1. Perfect flatness

As we said above, a polynomial P (X) =
P

n

k=0 akX
k 2 C [X] is “perfectly flat” on a

subset � of the unit circle if (3.2) holds. It is easy to see that if � is a (finite or infinite) sub-
group of the unit circle with card � > degP (where card � denotes the number of elements
of �), then the constant in (3.2) equals kPk2 defined by (3.3), but this is not always true for a
subgroup � such that card � 6 degP .

So the perfect flatness (3.2) cannot hold if � is the whole unit circle. Assuming P (0) 6= 0
and degP = n, it is easy to see that (3.2) cannot hold either if card � > 2n, but that whenever
card� 6 2n there are some such P (X) for which (3.2) holds.

An interesting open problem is the following: Given an integer n > 1, find the largest
value�(n) of those integers d > 1 such that there exists a polynomialP (X) =

P
n

k=0 akX
k 2

C [X] which is “unimodular” (i.e., ja
k
j = 1 for all k = 0; 1; : : : ; n) and for which the perfect

flatness (3.2) holds on the group �
d

of d-th roots of unity in C . The computation of �(n)
is easy for small n, for example: �(1) = 2, �(2) = 4, �(3) = 5, �(4) = �(5) = 6. A
list of values of �(n) has been computed (Björck & Saffari, 1998, and on-going search in
2000–2001). No values of n with �(n) > n + 3 have been found so far, but we do not have
enough evidence to conjecture that one always has either �(n) = n + 1 or �(n) = n + 2.
The following partial results are known:

�(n) > n+ 1 (for all n > 1)(3.4)

�(n) > n+ 2 (for infinitely many n)(3.5)

�(n) 6 2n� 1 (for all n > 1) :(3.6)

(3.4) follows from elementary results (Gauss sequences), see section 3.2 on bi-unimodular
sequences. (3.5) is a non-trivial result of Björck and Saffari (unpublished). (3.6) is not hard
to prove for even n, however for odd n it can be shown (Saffari, unpublished) to be equivalent
to a profound theorem of Dresel, White and Hunt (see also the section in [39] on “Huffman
sequences”).

If, instead of polynomials with complex unimodular coefficients, we consider polynomials
with real unimodular coefficients (i.e., a

k
= �1 for all k = 0; 1; : : : ; n), then (3.2) becomes

a different type of problem. It is very easy to check that, in that case, (3.2) never holds if
card� > n + 3. It can be proved (Saffari [38], unpublished) that (3.2) never holds either
if card � = n + 2. As for the impossibility of (3.2) for card � = n + 1 (except for n = 3),
it is equivalent to the famous “Hadamard Circulant Conjecture” due to Ryser [33], an open
problem going back to the 1950’s and stating that a circulant matrix of order L (with �1
entries) cannot be a Hadamard matrix unless L = 4.
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3.2. Bi-unimodular sequences

This is a notion which we will define a little later and which will turn out to be equivalent
to that of unimodular polynomials of degree n which are perfectly flat on the group �

n+1

of (n + 1)th roots of unity in C (see section 3.1 above). I mention this notion at this point
because, historically, it can be considered as the oldest idea of “flat polynomials” since it goes
back to Gauss. Indeed, let L be any odd integer > 3, and consider the “Gaussian sequence”
of length L:

(3.7) a
k
:= !�k

2

; (k = 0; 1; : : : ; L� 1)

where ! = exp (2i�=L) is the first primitiveL-th root of 1 in C , and � is any integer relatively
prime to L. Equivalently, we may consider the infinite sequence (a

k
), (k 2 Z), as periodic of

period L. Defining the normalized discrete Fourier transform (DFT) of a
k

as the sequence

(3.8) â
r
:=

1p
L

L�1X
k=0

a
k
� !rk; (r = 0; 1; : : : ; L� 1)

we can easily check that (â
r
) is unimodular as well: jâ

r
j = 1 for all r = 0; 1; : : :, L� 1. This

fact was known to Gauss (to whom, by the way, the earliest ideas of Fourier Analysis can
be tracked down, and not to Fourier or Clairaut). More generally, given any integer L > 2,
whether odd or even, any finite sequence (a

k
), (k = 0; 1; : : : ; L� 1), of L complex numbers

will be called “bi-unimodular” if it has modulus one (ja
k
j = 1 for all k = 0; 1; : : : ; L � 1)

and if its normalized DFT

â
r
:=

1p
L

L�1X
k=0

a
k
� !rk; (! = e2i�=L; r = 0; 1; : : : ; L� 1)

has modulus one, too: jâ
r
j = 1 for all r = 0; 1; : : : ; L � 1. (The term “bi-unimodular” was

coined by G. Björck and myself in our 1995 joint paper [7]). Thus, for odd L, the Gaussian
sequence (3.7) is an example of a bi-unimodular sequence of length L. The sequence (3.7) is
not bi-unimodular when L is even, but in this case we have another type of Gaussian sequence
which is bi-unimodular:

(3.9) b
k
:= ��k

2

; (k = 0; 1; : : : ; L� 1)

where � = exp (i�=L) is the first primitive root of unity of order 2L in C , and � again any
integer relatively prime to L. Note that, while (3.7) is bi-unimodular for odd L but not for
even L, similarly (3.9) is bi-unimodular for even L but not for odd L.

Obviously a unimodular sequence (a
k
), (k = 0; 1; : : : ; L � 1), of length L is bi-unimod-

ular if and only if its “associated polynomial” P (X) =
P

n

k=0 akX
k (of degree n = L� 1) is

perfectly flat on the group �
L

of L-th roots of 1 in C .
The starting point of the theory of bi-unimodular sequences was an oral question asked

by Per Enflo in 1983 at Stockholm University [13]: If p is a given odd prime number, is it true
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that the Gaussian sequences a
k
= !�k

2+�k, (! = e2i�=p, � and � integers with p not dividing
�), (k = 0; 1; : : : ; p� 1), are the only unimodular sequences of length p, with a0 = 1, whose
normalized DFT has modulus one?

In our present vocabulary, Per Enflo was asking whether such Gaussian sequences were
the only normalized (a0 = 1) bi-unimodular sequences of odd prime length. If the answer
had been “yes”, it would have helped him with estimations of some exponential sums. Later
on he found another method (not requiring an answer to the above question) to carry out the
estimations of his exponential sums anyway.

For p = 3 the answer is trivially “yes”, and for p = 5 Lovász [24] checked that the answer
is “yes” as well.

In 1984 G. Björck (Stockholm University) was trying, by computer search, to check that
for p = 7 the answer to Per Enflo’s question was “yes” as well, when suddenly the counter-
example

(3.10) (1; 1; 1; ei�; 1; ei�; ei�) (with � = arccos (�3=4))

“popped out” (as Björck put it!). Later on in 1984 Björck found, again by computer search,
other counter-examples to Per Enflo’s question, including

(3.11) (1; 1; ei�; 1; 1; 1; ei�; ei�; ei�; 1; ei�)

(with � = arccos (�5=6)). When early in 1985 Björck presented these counter-examples at
the A. Haar memorial Conference [5], he still had no idea of the structure of the sequences
(3.10) and (3.11). Actually, if in the sequence (3.10) [resp. (3.11)] we replace the first term
by zero and the terms ei� [resp. ei�] by �1, we get the “Legendre symbol” sequence modulo
7 [resp. mod 11]: The terms ei� [resp. ei�] are located at the quadratic non-residues (modulo
7, resp. modulo 11). This is a fact that Björck observed a little later, in the fall of 1985, and
that he subsequently generalized ( [6], 1990) to every prime � �1 (mod4):

If in the p-term “Legendre symbol” sequence (0; 1; : : : ;�1), (p any prime � �1 modulo
4) we replace the first term zero by 1 and every �1 by

(3.12) exp

�
i arccos

1� p

1 + p

�
=

1� p

1 + p
+ i

2
p
p

1 + p

we obtain a bi-unimodular sequence of length p, with only two values, namely 1 and the
number given by (3.12).

In sections 3.5 and 3.6 below I shall determine all bi-unimodular sequences with only
two values: it will turn out, in particular, that Björck’s above theorem is not specific to prime
numbers but can be extended to all integers v (necessarily � �1 modulo 4) for which there
exists a so-called “Hadamard-Paley cyclic difference set.” Thus it will be seen to work for
v = 15, which is the smallest non-prime v with this property. From the same discussion of
sections 3.5 and 3.6 it will follow that such a bi-unimodular sequence (with only two values)
cannot exist for any length � 1 (mod4). However, for prime lengths � 1 (mod4), Björck
proved (in the same paper [6]) the next best thing:
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If in the p-term “Legendre symbol” sequence (0; 1; : : : ;�1; : : : ; 1), (p any prime � 1
modulo 4) we replace the first term 0 by 1, every term 1 by

(3.13) � := exp

�
i arccos

Æ
p
p� 1

p� 1

�
=
Æ
p
p� 1

p� 1
+ i

p
p2 � 3p+ 2Æ

p
p

p� 1

(with any choice of Æ = �1) and every �1 by the complex conjugate �, with the same choice
of Æ = �1, then we obtain a bi-unimodular sequence of length p (which thus has first term 1
and only two other values, namely � and �).

In the 1990’s more research was done on bi-unimodular sequences (Saffari [37], Björck
& Saffari [7], Haagerup [19], . . . ) and there are some very nice results and open problems on
this subject, that I hope to discuss in [39].

3.3. Digression on (v; k; �) difference sets

This brief digression into Combinatorics (in this section and in next section 3.4) is just
intended to recall, for the benefit of the harmonic analyst reader, some definitions and ele-
mentary facts which will be useful in the discussion (in sections 3.5 and 3.6) of polynomials
whose coefficients only take two values (whether unimodular or not) and which are perfectly
flat on the group �

L
of L-th roots of 1 in C , (L = 1 + degP ).

There are currently two entirely different and unrelated types of mathematical objects,
both carrying (unfortunately) the same name of “difference sets”. We will be concerned only
with the second notion, yet I will define both just to avoid any possible confusion (as I have
often witnessed instances of such confusion between the two notions).

The set �(S) := fx � y : x; y 2 Sg, where S is any subset of an (additive) abelian
group G, is often called the “difference set” of S. This notion is well known to all analysts
because of the result saying that if G = Rn and if S has positive Lebesgue measure, then the
origin belongs to the interior of �(S) and therefore �(S) has non-empty interior. There is
an enormous literature on this notion and its extensions, in such areas as analysis, algebra,
combinatorics and number theory. I will not say anything else on this, as it is of no concern
to us here.

The second notion of “difference sets” (the one which does interest us here) pertains to
finite groups only. Let G be any finite group, abelian or not, with neutral element denoted
by e. A subset D of G is called a left (resp. right) (v; k; �) difference set if cardG = v,
cardD = k and the intersection (uD) \ D (resp. (Du) \ D) has cardinality � whenever
u 2 G, u 6= e. The term “difference set” is due to the fact that such sets were first considered
in additive groups Z=nZ. Note that D � G is a left (v; k; �) difference set if and only if
D�1 := fx�1 : x 2 Dg is a right (v; k; �) difference set. Also if D is a left (resp. right)
(v; k; �) difference set, then its complement D0 := GnD is also a left (resp. right) (v0; k0; �0)
difference set, with

(3.14) v0 = v; k0 = v � k; �0 = v � 2k + �:
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The most obvious examples of difference sets are the following four types (called the “trivial
difference sets”):

1. The empty set ;, which is a (v; 0; 0) difference set.
2. Singletons, which are (v; 1; 0) difference sets.
3. D = G, which is a (v; v; v) difference set.
4. Complements of singletons, which are (v; v � 1; v � 2) difference sets (if v > 2).

The simplest (and, historically, the first) example of a non-trivial difference set is due to
Paley [29]: If p is a prime � �1 (mod4), then the set of all (non-zero) quadratic residues
modulo p, and also the set of all quadratic non-residues modulo p, are (v; k; �) difference
sets with v = p, k = (p� 1)=2, � = (p� 3)=4. (These sets are non-trivial difference sets if
p > 7, and trivial (3; 1; 0) difference sets if p = 3).

In the general case, a simple counting argument shows that

(3.15) k(k � 1) = (v � 1)�:

Let F : G ! C be any complex-valued function defined on G. Its right (resp. left) autocor-
relation function is the function 

F
: G! C (resp.

F
 : G! C ) defined by

(3.16) 
F
(u) :=

X
g2G

F (g)F (gu)
F
(u) :=

X
g2G

F (g)F (ug) :

If � = �
D

is the characteristic function of any (a priori arbitrary) subsetD ofG, i.e., �(g) = 1
if g 2 D and �(g) = 0 if g 62 D, then D is obviously a right (resp. left) (v; k; �) difference
set if and only if


�
(u) = k if u = e; 

�
(u) = � if u 6= e(3.17)

resp.
�
(u) = k if u = e;

�
(u) = � if u 6= e:(3.18)

This yields another proof of (3.15). Indeed, for example by (3.17),

k2 =

 X
g2G

�(g)

!2

=
X
g2G

�(g)
X
h2G

�(h) =
X
g2G

�(g)
X
u2G

�(gu)

=
X
u2G


�
(u) = 

�
(e) +

X
u6=e


�
(u) = k + (v � 1)�:

(This was, of course, just the classical convolution product argument).

3.4. Binary functions on finite groups with autocorrelation functions constant outside the
neutral element

By a “binary function” we mean complex-valued functions only taking two values, which
can be arbitrary complex numbers, possibly of modulus > 1. If � 2 C and � 2 C are
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these values, we call such a function an f�; �g-function. Examples of binary functions are
f0; 1g-functions, f1;�1g-functions (also called �1 functions), etc.

Although the following result might conceivably not have appeared elsewhere in the ex-
plicit form given below, it is nevertheless probably well known (in essence) to many people
in combinatorics and signal processing, at least in the case of abelian or cyclic groups.

THEOREM 3.1. Let G be a (not necessarily abelian) finite group of order v with neutral
element e, and let F : G! C be any binary function with values f�; �g, (� 6= �). Then the
right (resp. left) autocorrelation function of F is constant on Gnfeg if and only if F �1(�) :=
fx 2 G : F (x) = �g is a right (resp. left) (v; k; �) difference set. In that case the right
(resp. left) autocorrelation function has value 0 > 0 at x = e, and the same (real) value
 < 0 at all x 2 Gnfeg, where

(3.19) 0 = kj�j2 + (v � k)j�j2
and  is defined by any of the three (equivalent) relations

 = 0 � (k � �)j�� �j2(3.20)

 = �j�j2 + (v � 2k + �)j�j2(3.21)

jk� + (v � k)�j2 = 0 + (v � 1);(3.22)

so that  satisfies the inequalities

(3.23) � 0

v � 1
6  < 0 :

The proof is based on the following lemma, which is also useful elsewhere.

LEMMA 3.1. Let H : G ! C be any complex-valued function on a (not necessarily
abelian) group of order v. Put J(x) = aH(x) + b with a; b 2 C . Then the right autocorrela-
tion functions 

H
(u) and 

J
(u) satisfy

(3.24) 
J
(u) = jaj2

H
(u) + jbj2 � v + 2<

 
ab
X
x2G

H(x)

!
;

and a similar identity holds for the left autocorrelation functions.

Proof. The proof of the lemma is straightforward. To prove the above theorem, we may just
consider the right autocorrelation function, as the change of variable x ! x�1 reduces the
left case to the right one. Let � := �

D
where D := F�1(�). Then the theorem follows from

the above lemma by straightforward calculations, upon noting that each of �(x) and F (x)
can be expressed in terms of the other one from the identity F (x) = (�� �)�(x) + �, since
�� � 6= 0. �
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3.5. Binary functions on finite groups with autocorrelation functions vanishing outside the
neutral element

Let G be any finite (not necessarily abelian) group of order v > 2, with neutral element e.
Our purpose in this section is to find all binary functions (and, in particular, all unimodular
binary functions) F : G ! C for which the, say, right autocorrelation function 

F
satisfies


F
(u) = 0 for all u 2 Gnfeg. Without loss we may assume that the two values of F are

1 and some � 2 C , (� 6= 1). As a special case of the result of section 3.4, with  = 0, G
contains a (right) (v; k; �) difference set D such that F (x) = 1 if x 2 D and F (x) = � if
x 2 GnD. Since the case j�j = 1 (of binary unimodular functions) is an important special
case, our purpose consists of addressing the following two problems:

A) If D � G, (D 6= ;), is some (right) (v; k; �) difference set, find all those � 2 C such
that the binary function F : G ! C defined by F (x) = 1 if x 2 D and F (x) = � if
x 2 GnD satisfies 

F
(u) = 0 for all u 2 Gnfeg.

B) Find all those (right) (v; k; �) difference sets D � G for which there exists at least one
complex number �, with j�j = 1, so that the above (unimodular) function F satisfies

F
(u) = 0 for all u 62 Gnfeg.

Solving Problem A): Put � = 1 and  = 0 in (3.21), to get

(3.25) �+ (v � 2k + �)j�j2 + 2(k � �)<� = 0:

Recall thatGnD is a (right) (v0; k0; �0) difference set with v0 = v, k0 = v�k, �0 = v�2k+�.
So if the coefficient �0 = v � 2k + � of j�j2 in (3.25) is zero, then D is a “trivial” difference
set (see section 3.3) for which either k = � = v or k = v � 1, � = v � 2. In the former case
the left side of (3.25) reduces to � = v, which is impossible since v 6= 0. In the latter case
(3.25) reduces to

(3.26) <� = 1� v

2
(with v > 2)

and those � 2 C which satisfy (3.26) constitute a vertical line. The case k = � = 0 is
excluded since we supposed D 6= ;. The last possibility for D to be a “trivial” difference set
(i.e., now a singleton) is k = 1 and � = 0, in which case (3.25) reduces to

(3.27) (v � 2)j�j2 + 2<� = 0:

If v = 2, then (3.27) is the same as (3.26) and the acceptable � 2 C are all the � = it,
(t 2 R). If v > 3, then the set of those � 2 C which satisfy (3.27) is the circle of radius
1=(v � 2) with center of abscissa �1=(v � 2) on the real axis.

Now if D is a non-trivial difference set (which easily implies v > 7), then in (3.25) we
have � > 1, �0 > 1 and k � � > 1. The set of these � 2 C satisfying (3.25) is then the circle
of radius

p
k � �=�0 with center of abscissa �(k� �)=�0 on the real axis, (�0 = v� 2k+ �).

Let us recapitulate the result obtained regarding problem A):
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THEOREM 3.2. Let G be a (not necessarily abelian) finite group of order v > 2, with
neutral element e. Let D � G, (D 6= ;), be a (right) (v; k; �) difference set. Define a binary
function F : G ! C by F (x) = 1 if x 2 D and F (x) = � if x 2 Gnfeg, where � 2 C is
arbitrary. Then the right autocorrelation function 

F
identically vanishes on Dnfeg if and

only if � is in the set S
D

of those � 2 C such that

(3.28) �+ �0j�j2 + 2(k � �)<� = 0

with �0 = v � 2k + �. Also S
D

is non-empty if and only if:

a) Either D is the complement of a singleton, in which case S
D

is the vertical line <� =
1� v

2
.

b) Or v > 3 and D is a singleton, in which case S
D

is the circle of radius 1=(v � 2) with
center of abscissa �1=(v � 2) on the real axis.

c) Or D is a non-trivial difference set, in which case S
D

is the circle of radius
p
k � �=�0

with center of abscissa �(k � �)=�0 on the real axis.

Before proceeding to address Problem B, let us make an interesting remark: PuttingD 0 :=
GnD, then in the above theorem, whether D is a trivial or a non-trivial difference set, the set
S
D0
� C is always the transform of S

D
by the inversion whose inversion-circle is the unit

circle.

Solving Problem B). This boils down to deciding whether the set S
D

of the above theorem
intersects the unit circle. So let us examine the various possibilities. If D is the complement
of a singleton (with v > 2), the vertical line <� = 1 � v

2
intersects the unit circle if and

only if 1 � v

2
> �1, that is, either v = 2 or v = 3 or v = 4. For v = 2 the intersection

points are � = �i, yielding the Gauss sequences (1;�i) of length 2 (see section 3.2). For
v = 3 the intersection points are � = exp (�2i�=3), yielding the Gauss sequences (1; 1; j)
and (1; 1; j2), (j = e2i�=3), and their obvious modifications. For v = 4 the intersection point
is at � = �1, yielding the�1 functions whose values a, b, c, d are�1 and satisfy abcd = �1.
For v = 4 the group G can be non-cyclic. If G is cyclic, then we get ordinary �1 sequences
of length 4 which are special cases of “Barker sequences”, “Golay sequences”, “Shapiro
sequences”, “PONS sequences”, etc. If v > 3 and D is a singleton, again S

D
6= ; if and only

if v = 3 or v = 4, and we once again obtain the same (Gauss) sequences of length 3 and the
same �1 functions as above.

We now come to the case when D is a non-trivial difference set, and this is the only non-
trivial part (!) of this section 3.5. From assertion c) in the above theorem it easily follows by
elementary calculations that S

D
intersects the unit circle if and only if

(3.29) v � 4(k � �) 6 0 :
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On the other hand, upon choosing � = 1 and � = �1 in Theorem 3.1, we infer from (3.19),
(3.20) and (3.23) that, for any (v; k; �) difference set with v > 3,

(3.30) v � 4(k � �) > � v

v � 1

and therefore that v � 4(k � �) > �1, since the left side of (3.30) is an integer. Thus (3.29)
can be satisfied in only two cases:

Case 1. v � 4(k � �) = �1(3.31)

Case 2. v � 4(k � �) = 0:(3.32)

Before studying these two (very important) cases, let us first clarify some terminology. Many
authoritative experts (such as [2] and [18], for example) call (v; k; �) difference sets satisfy-
ing (3.31) “Hadamard difference sets” and those satisfying (3.32) “Menon difference sets”.
Other authoritative experts call those satisfying (3.32) “Hadamard difference sets” and those
satisfying (3.31) “Hadamard-Paley difference sets”. All these choices of names are histor-
ically justified, yet this discrepancy is unfortunate and confusing. So I humbly propose to
adopt the following choices (and make everyone happy):

Definitions. Difference sets satisfying (3.31) will be called “Hadamard-Paley difference
sets”. Those satisfying (3.32) will be called “Hadamard-Menon difference sets”.

Let us now study these two types of difference sets and their incidences on our Problem
B). Elementary arithmetical calculations show that (assuming k 6 v=2 without loss) the
diophantine identities (3.15) and (3.31) hold simultaneously if and only if the parameters
(v; k; �) of the (Hadamard-Paley) difference set have the form

(3.33) v = 4n� 1; k = 2n� 1; � = n� 1

and that the diophantine identities (3.15) and (3.32) hold simultaneously if and only if the
parameters (v; k; �) of the (Hadamard-Menon) difference set have the form

(3.34) v = 4N2; k = 2N2 �N; � = N2 �N :

Now some elementary calculations show that if D is a (right, say) Hadamard-Paley dif-
ference set as defined by (3.33), then the only unimodular solutions � 2 C of our above
Problem B) are

(3.35) � = exp

�
i arccos

1� v

1 + v

�
= exp

�
i arccos

1� 2n

1 + 2n

�

and, of course, the complex conjugate of this number. Also elementary calculations show
that if D is a (right, say) Hadamard-Menon difference set as defined by (3.34), then the only
unimodular solution � 2 C of our above Problem B) is � = �1.
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Also observe that all the solutions of Problem B) in the case of trivial difference sets are
special cases of the above discussion (for Hadamard-Paley and Hadamard-Menon difference
sets), except for the Gaussian sequences (1;�i) of length 2. Let us now recapitulate:

THEOREM 3.3. Let G be any finite (not necessarily abelian) finite group of order v > 2,
with neutral element e. Let D � G, (D 6= ;), be a (right) (v; k; �) difference set (satisfying
k 6 v=2 without loss). Define a binary unimodular function F : G ! C by F (x) = 1 if
x 2 D and F (x) = � if x 2 GnD where � 2 C and j�j = 1. Then the (right) autocorrelation
function 

F
satisfies 

F
(u) = 0 for all u 2 Gnfeg if and only if we are in one of these three

situations:

a) v = 2 and F is one of the (Gauss) sequences (1; i) and (1;�i).
b) D is a Hadamard-Paley difference set given by (3.33) and � is defined by (3.35) or is

the complex conjugate of that number.
c) D is a Hadamard-Menon difference set given by (3.34), and � = �1.

3.6. Binary bi-unimodular sequences

The case of binary bi-unimodular sequences is just the special case of the discussions
and results of section 3.5 when the group G is cyclic. The extension of the result (3.12) of
Björck [6], promised in section 3.2, is the special case of Theorem 3.3 when G is cyclic.

This now leads us to the crucial problem of the existence and determination of such
Hadamard-Paley and Hadamard-Menon difference sets. Even in the case of cyclic groups
these existence problems are far from being entirely solved. Several classes of cyclic Hada-
mard-Paley difference sets are known. See for example [2] and [18]. As for cyclic Hadamard-
Menon difference sets, no example is known (except, of course, for v = 4), and a long-
standing conjecture (due to Ryser [33]) is that none exists if v > 4. This is equivalent to
the famous “Hadamard circulant conjecture” which states that no circulant matrix of order v
with entries �1 can be a Hadamard matrix unless v = 4.

The interpretation of binary bi-unimodular sequences in terms of polynomials of degree
v � 1 (with binary unimodular coefficient sequences), which are perfectly flat on the group
�
v

of v-th roots of 1, is by now obvious. We will come back to these in some depth in [39].

3.7. Sup-norms of bi-unimodular polynomials on the unit circle

A “bi-unimodular polynomial” is, of course, the associated polynomial

(3.36) P (X) =
L�1X
k=0

a
k
Xk

of a bi-unimodular sequence (a0; a1; : : : ; aL�1).
A useful theorem of Landau [21] says that if Q(X) =

P
L�1
k=0 ckX

k 2 C [X] is any poly-
nomial with complex coefficients, then its maximum modulus kQk1 on the whole unit circle



Bahman Saffari / Some polynomial extremal problems which emerged in. . . 229

is majorized in terms of its maximum modulus on the group �
L

of L-the roots of 1 as follows:

(3.37) kQk1 6 C �
�
max
g2�L

jQ(g)j
�
� logL

where C is some absolute constant, and the logL cannot be replaced (in the general case) by
a smaller factor. This can be proved by Lagrange interpolation, and also otherwise.

Since our bi-unimodular polynomial (3.36) satisfies jP (g)j = p
L for all g 2 �

L
, (3.37)

implies that

(3.38) kPk1 6 C
p
L logL:

After Björck [6] gave, at the 1989 ASI on “Recent Advances in Fourier Analysis”, his lec-
ture on (what we subsequently called the) bi-unimodular sequences, one of the participants
(perhaps H. S. Shapiro or D. J. Newman, if my memory is correct) conjectured that, for
bi-unimodular polynomials P (X), (3.38) could be improved to:

(3.39) kPk1 6 C1

p
L (C1 =some absolute constant);

i.e., P (X) has bounded crest factor (see beginning of part 3). His “evidence” for the conjec-
ture (3.39) was twofold:

A) On one hand the conjecture (3.39), in the special case of the Gauss sequences

(3.40) a
k
= !ak

2+bk

(L odd, ! = e2i�=L, a relatively prime to L), had been around for many decades,
perhaps even before the 1920’s and, incidentally, is still open in 2000–2001.

B) On the other hand (3.39) was known to be true for two particular classes of bi-uni-
modular sequences/polynomials, namely the Gauss sequences (3.40) with the choices
a = (L � 1)=2 (see Littlewood [22]) and the bi-unimodular polynomials (of length
L = M2) studied in 1977 by Byrnes [10]:

(3.41) P (X) =
M�1X
h=0

M�1X
r=0

e2hri�=MXMh+r:

I did some thinking on the conjecture (3.39) from time to time, until I saw how to disprove
it in June 2000:

THEOREM 3.4. If p is a prime� �1(mod4) and a
k

is the binary bi-unimodular sequence
of length p (originally introduced by Björck) defined by

a
k
= exp

�
i arccos

1� p

1 + p

�
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if k is a quadratic non-residue (mod p) and a
k
= 1 otherwise, (0 6 k 6 p � 1), then the

associated (bi-unimodular) polynomial satisfies, for all sufficiently large p,

(3.42) kPk1 >
2

�

p
p log log p� 1

2

and, if � > 0 is fixed, then for infinitely many such primes p

(3.43) kPk1 >

�
2

�
� e � �

�p
p log log p

where  is Euler’s constant.

These results are immediate consequences of Montgomery’s 1980 work [28] on the Fekete

polynomials
P

p�1
k=0 �

�
k

p

�
Xk, where �

�
k

p

�
is Legendre’s symbol. It is unforgivable that I

have not seen earlier this straightforward disproof of conjecture (3.39), since Montgomery
had given me a copy of his paper [28] as early as 1988.

This disproof, in turn, gives rise to interesting results and problems on binary bi-unimod-
ular sequences, which I hope to discuss in [39].

4. The drunkard, the bar owner and the police

Sorry, dear reader, I must abruptly stop my write-up at this point. I have a deadline to
respect and I had underestimated the time and space needed to just touch upon some most
interesting topics I had in mind when writing the introduction. Below is a list of some of these
topics, and I am also omitting some of them, with the intention of including most of them in
the extended version [39] of this paper (which, in a way, I have barely started to write).

4.1. Some topics to be found in the extended version [39]

� The genesis of the analytic theory of flat polynomials from nineteenth century Fourier
analysis. The origins from the absolute convergence of trigonometric and Fourier se-
ries: Dirichlet, Fejér, Bernstein and many others up to the present days.

� The various Hardy-Littlewood unimodular polynomials with bounded crest factors.
Their connections with number theory and Fourier analysis.

� Bounded crest factor properties of Gauss and Byrnes polynomials and open problems.
The van der Corput methods and their discrete analogs (Kuzmin, Landau). D.J. New-
man’s method.

� D. J. Newman and H. S. Shapiro in New York in the late 1940’s. The making of the
Shapiro polynomials at M.I.T. (1950–1951). Raphaël Salem and the Fekete polynomi-
als. Infra-red spectrometry and the Golay sequences. History of Shapiro polynomials
and Golay sequences: Rediscoveries, truths, lies, counter-truths and folklore galore.

� Barker sequences and their generalizations. The Hadamard Circulant Conjecture, from
Reiser to B. Schmidt via R. Turyn.
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� D.J. Newman’s conjecture and Barker sequences. Recent (published and unpublished)
research.

� Norms of unimodular polynomials. History of Erdös-Newman conjectures. Little-
wood’s work and his various conjectures and “counter-conjectures”. The strange story
of the Byrnes pseudo-polynomials, Körner’s “true-false” theorem, Kahane’s ultra-flat
polynomials and further on-going research.

� Littlewood’s conjecture on Lp-norms of exponential sums: Exciting research from
Paul Cohen (late 1950’s) to Ivo Klemes (early 2000’s).

4.2. Time to stop

The above list is incomplete. It is pointless to try to remember all the topics that I had
intended to put in this paper, as I have to stop anyway. I deliberately refrained from giving
any references in the above section 4.1, as there is just too much exciting work (whether old,
recent, unpublished or on-going) to quote. It is better to do a rather thorough job in [39] than
a sloppy job here.

I find myself in the same situation as a drunkard sitting late at night in a bar with a (nearly)
full bottle of whiskey he intends to drink, who is suddenly told by the bar owner that it’s now
closing time and that the police are about to arrive any second and enforce the regulations.
The drunkard has to leave the bar, and I have to stop here. By the time this (quasi-aborted)
paper appears, I hope the extended version [39] will be available for whoever is interested.
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[32] Q. I. Rahman & G. Schmeisser. Les inégalités de Markov et de Bernstein. Presses Univ. Montréal,
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