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Lesser Known FFT Algorithms

R. Tolimieri and M. An

ABSTRACT. The introduction of the Cooley-Tukey Fast Fourier transform (C-T FFT)
algorithm in 1968 was a critical step in advancing the widespread use of digital com-
puters in scientific and technological applications. Initial efforts focused on realizing
the potential of the immense reduction in arithmetic complexity afforded by the FFT
for computing the finite Fourier transform and convolution. On existing serial butter-
fly architectures, this limited implementations of the FFT to transform sizes a power
of two.

The original C-T FFT algorithms and its many extensions rested mainly on addi-
tive structures of the data indexing set and divide-and-conquer strategies for reducing
complexity. The relative cost of multiplications as compared with additions on these
early machines motivated the study of new algorithms for reducing multiplications
usually at the cost of increasing additions. These new algorithms were based on mul-
tiplicative structures of the data indexing set. They resulted in greater flexibility as
compared to earlier efforts by allowing for fast small prime size computations which
could be embedded in a wide collection of large transform sizes.

During the 1980s, the increasing importance of RISC and parallel computers re-
moved some of the initial motivation for these multiplicative FFTs. Many RISC ar-
chitectures featured a hardwired multiply and accumulate which permitted multiplica-
tions to be nested in additions. The goal was to arrange the computations so that most
multiplications were followed by an addition. Parallel architectures placed the major
algorithmic burden on controlling the data flow. The exotic data flow of the multi-
plicative FFTs were often incompatible or at least required an immense coding effort
for efficient parallel computation. Only the need for flexible transform sizes justified
continued efforts.

The recent importance of FPGAs and reconfigurable hardware renews the need
to reduce multiplication counts. In this talk, we will review some of the work on
multiplicative approaches introduced mainly at IBM in the 1970s and 1980s and place
these results within the realm of harmonic analysis.

1. Introduction

The fast Fourier transform (FFT) algorithm has a long history dating from Gauss but has
over the years been rediscovered in a variety of contexts. It is closely related to the Poisson



152 R. Tolimieri and M. An / Lesser Known FFT Algorithms

summation formula and the Chinese remainder theorem for polynomials. In the latter it
reflects the semi-simplicity of the complex group algebra of Z=N , N > 2.

In 1965 the FFT was introduced to IBM by James Cooley [7] and was the joint work of
James Cooley and John Tukey. Although other FFT algorithms such as the Good-Thomas
prime factor algorithm had been in use, especially in geophysics [10, 16], the great reduc-
tion in computation time for large size problems, flexibility, ease of coding, and widespread
applicability of the Cooley-Tukey (CT) FFT algorithm was quickly recognized by IBM man-
agement. They saw it as the key tool for the rapidly expanding use of digital computers.

The success of the CT FFT algorithm often hid several of its disadvantages in scientific
and engineering applications. In fact, from the very beginning, especially at IBM, other
algorithms for computing the finite Fourier transform had been discovered and sporadically
found use. Typically these algorithms increase the number of additions and decrease the
number of multiplications as compared with the CT FFT.

During the 1980s, with the introduction of reduced instruction set computer (RISC) pro-
cessors which are capable of nesting multiplications inside additions (pipelined dual ops),
these approaches were ignored.

We will discuss two historically neglected approaches which, driven by recent technolog-
ical advances, have become increasingly important, the Rader-Winograd multiplicative FFT
algorithms and the reduced-polynomial transform algorithms.

Much of this work was carried out during the late 1970s and early 1980s by S. Wino-
grad [19–22] and H. J. Nussbaumer [12, 13] and placed in a mathematical framework by
several of their collaborators including L. Auslander, E. Feig [3] and at a later time by C. S.
Burrus [5, 6], I. Gertner [9], and M. Rofheart [15]. Additional results and references can be
found in texts [4, 8, 11, 17, 18].

Proofs of theorems stated in this presentation are in [18].

2. Multiplicative Theory

2.1. Introduction

Standard divide-and-conquer FFT algorithms are based on the existence of nontrivial sub-
groups of the natural additive group structure of the underlying indexing set. The specification
of a subgroup decomposes the indexing set into cosets and the computation is decomposed
relative to the coset partitioning. The importance of two-to-a-power size indexings in early
programming efforts is due to the plentitude of subgroups and the simplicity of implementing
the two-point Fourier transform (butterfly). Data readdressing is especially regular (striding)
and was eventually hardwired into many architectures (LOAD-STORE).

The immense speed-up in run time of two-to-a-power FFT codes as compared with direct
computation resulted in significant compromises in many applications. The need to zero-
pad from a natural computation size to the nearest two-to-a-power size introduced increased
memory requirements and less accuracy, especially in multidimensional problems. In some
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applications, such as X-ray crystallography, symmetry relations on data which had played an
essential role before the FFT became difficult to fully exploit inside standard FFT codes.

Moreover, the regularity of these codes caused memory call conflicts on many large vector
and parallel processors. The need for fast Fourier transform codes acting on more flexible
data set sizes became, by the end of the 1970s, an increasingly important goal. The most
important step in achieving this goal was quickly seen to be the designing of algorithms for
small prime size Fourier transforms which could then be nested in standard FFT codes.

C. Rader [14] and independently S. Winograd had developed such algorithms in the early
1970s, but for the most part these algorithms were viewed as mathematical oddities. These
algorithms suffered from several disadvantages which at the time precluded their widespread
adoption. Coding is difficult, with each size requiring a machine dependent special, time-
consuming coding effort to implement complex data readdressing. On reduced instruction set
computer (RISC) architectures the instruction set for these codes can use significant memory.

From the late 1980s codes for small prime size Fourier transforms have increasingly be-
come part of standard programming packages. In this section we will first describe the orig-
inal derivations of C. Rader and S. Winograd and then place them in a harmonic analysis
framework.

2.2. Rader algorithm

The additive group Z=p, p a prime, has no nontrivial subgroups, but the multiplicative
group U(p) of nonzero elements is cyclic. The main idea underlying the p-point FFT as
described by C. Rader is that the p-point Fourier transform relative to input and output data,
ordered by powers of any generator of U(p), has an especially simple form: the p-point
Fourier transform becomes a (p� 1)-point cyclic convolution.

For odd prime p, the group of units U(pm) of Z=pm is again a cyclic group. Using this
result S. Winograd independently extended Rader’s result to odd prime power sizes. Fourier
transform algorithms over finite fields can be developed in a similar manner. These last FFT
algorithms are important in number theoretic transforms and in error-correcting coding [1,2].

Suppose p is an odd prime and t = p � 1. The unit group U(p) of Z=p is a cyclic group
of order t. Choosing a generator g of U(p), we have

U(p) = f1; g; : : : ; gt�1g:

Denote by �g the permutation of Z=p defined by

�g =
�
0 1 g � � � gt�1

�
;

and by Pg the p� p permutation matrix defined by

Pg = [e0 e1 eg � � � egt�1]

where en is the p-tuple having 1 in the n-th position and 0 otherwise, 0 6 n < p. The main
result of C. Rader is contained in the following theorem.
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THEOREM 1.

P�1
g
F (p)Pg =

2
66664

1 1 � � � 1

1
... C(p)
1

3
77775 ;

where C(p) is the (p� 1)� (p� 1) skew-circulant matrix

C(p) =
h
vg

j+k
i
=

2
6664

v vg � � �
vg vg

2

...
vg

t�1

3
7775 ; v = e2�i

1

p :

EXAMPLE 1. For p = 5 and g = 2,

P2 =

2
66664

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 1 0

3
77775

and

P�1
2 F (5)P2 =

2
666664

1 1 1 1 1

1 v v2 v4 v3

1 v2 v4 v3 v
1 v4 v3 v v2

1 v3 v v2 v4

3
777775
:

Set

H = F (t)

2
6664

v
vg

...
vg

t�1

3
7775 :
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THEOREM 2.

�
1
 F (t)�1

�
P�1
g
F (p)Pg (1� F (t)) =

2
66666666666664

1 t

0
1 �1

Ht�1

�

0 �
�

H1

3
77777777777775

:

Consider the functions �n, 0 6 n < t, on Z=p defined by the following table.

�0 �1 � � � �t�1

0 0 0 0

1 1 1 1

g 1 w wt�1

g2 1 w2 w2(t�1) w = e2�i
1

t .
...

gt�1 1 wt�1 w(t�1)(t�1)

TABLE 1. Multiplicative characters

Since Hn, 0 6 n < t, can be written as

Hn =
h
1 v vg : : : vg

t�1
i
2
66664

0

1

wn

...
w(t�1)n

3
77775 ;

we have the following result.

THEOREM 3.
Hn = F (p)(�n)(1); 0 6 n < t:

2.3. Multiplicative characters

Table 1 describes the multiplicative characters of Z=p. Such characters were introduced
by Gauss and studied in his work on reciprocity laws. The complex constants Hn, 0 6 n < t,
are called the Gauss sums of multiplicative characters.
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The general definition is given as follows. A mapping � : U(p) ! C is called a multi-
plicative character mod p if � is a homomorphism from the multiplicative group U(p) into
the multiplicative group of nonzero complex numbers,

�(ab) = �(a)�(b); a; b 2 U(p):

A multiplicative character mod p is completely determined by its value on the generator g of
U(p) by

�(gm) = �(g)m; 0 6 m < t:

Since gt = 1, �(g) is a t-th root of unity. For 0 6 n < t, denote by �n the multiplicative
character defined by

(2.1) �n(g) = wn

and observe that the multiplicative characters �n, 0 6 n < t, defined by ( 2.1) coincide with
the functions in Table 1.

Denote by L2(Z=p), the inner product space of all complex valued functions on Z=p with
inner product

hf; gi =
p�1X
n=0

f(n)g�(n); f; g 2 L(Z=p);

where � denotes complex conjugation.
Set r = t

2
.

THEOREM 4.
�r(g) = �1

and
��
n
= �t�n; 0 6 n < t:

THEOREM 5. For any two multiplicative characters � and � 0, we have

h�; �0i =
�

t; � = �0

0; � 6= �0:

Extend the domain of definition of each multiplicative characters � to Z=p by setting
�(0) = 0. Set �n = t�

1

2�n, 0 6 n < t.

THEOREM 6. The set
e0; �0; �1; : : : ; �t�1

is an orthonormal basis of L2(Z=p).

Since F (n)2f(x) = nf(�x) we have

F (p)2�(x) = p�(�x) = p�(�1)�(x);
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implying that the multiplicative characters are eigenvectors of F (p)2,

F (p)2� = p�(�1)�

and that the space spanned by
f�; F (p)�g

is invariant under the action of F (p). The action of F (p) on the multiplicative characters is
described in the next two theorems.

THEOREM 7.

F (p)e0 = e0 + �0:

F (p)�0 = te0 � �0:

For any nontrivial multiplicative character �, we have

THEOREM 8.
F (p)� =

p
pGp(�)�

�;

where
F (p)�(1) =

p
pGp(�):

Proof

F (p)�(x) =
X

y2U(p)

�(y)e2�i
xy

p

=
X

y2U(p)

�(x�1y)e2�i
y

p

= �(x�1)
X

y2U(p)

�(y)e2�i
y

p

= �(x�1)F (p)�(1):

By jjF (p)f jj2 = pjjf jj2, we have
jGp(�)j = 1:

Relative to the orthonormal basis e0, �0, �1, : : :, �t of L2(Z=p), we have

F (p)e0 = e0 + t
1

2�0;

F (p)�0 = t
1

2 e0 � �0

and
F (p)�n =

p
pGp(�)ut�n; 1 6 n < t:
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The matrix of F (p) relative to this basis is given by2
666666666666664

1 t
1

2

0
t
1

2 �1

p
pGp(�t�1)

�

0 �
�p

pGp(�1)

3
777777777777775

:

This matrix representation of F (p) is essentially the same as that in theorem 2. It is the first
step in several studies into the p-point Fourier transform [3]. Other studies include:

� construction of an orthonormal basis diagonalizing F (p),
� determining rational subspaces of F (p).

3. Multidimensional Algorithm

3.1. Introduction

The reduced transform algorithms (RTA) [9, 15, 17] compute a multidimensional Fourier
transform by first projecting the multidimensional input data onto lines (more generally, lower
dimensional planes) and then computing the one-dimensional Fourier transform of the pro-
jected data. By the periodic version of the projection slice theorem from tomography, these
one-dimensional Fourier transforms compute the multidimensional Fourier transform. The
RTA can be viewed as periodic Radon transforms.

Polynomial rings play many roles in algorithm design. Linear convolution can be defined
as polynomial product and cyclic convolution mod N can be defined as polynomial prod-
uct mod xN � 1. Fourier transform can be defined over certain quotient polynomial rings.
The Chinese remainder theorem (CRT) for polynomial rings is especially important in the
Cook-Toom and Winograd convolution algorithms [18, 22]. The convolution theorem which
diagonalizes cyclic convolution mod N relative to the N -point Fourier transform basis can
be viewed as the CRT applied to the quotient polynomial ring C[x]=xN � 1,

C[x]=xN � 1~�C[x]=x� 1�C[x]=x� v � � � � �C[x]=x� vN�1;

where v = e2�i
1

N .
Polynomial ring theory is central to many of the results in the works of H. J. Nuss-

baumer [12, 13], both for multidimensional convolution and Fourier transform (polynomial
transform). One goal in these works is to rely as much as possible on shifts and cyclic shifts
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to carry out these computations. Polynomial transforms compute multidimensional convolu-
tions by first using the CRT to decompose the computation into subcomputations, some of
which can be computed by Fourier transform computations over rings and then completed by
using the inverse CRT isomorphism to combine the subcomputations.

The RTA can be adapted to computing multidimensional convolution and provides a geo-
metric setting for the Nussbaumer polynomial transform. A multidimensional convolution
can be computed by RTA which first projects the multidimensional data onto lines, computes
the convolution of the one-dimensional data and then combines the subcomputations. It dif-
fers from the RTA for multidimensional Fourier transform in that the last step does not rely
on the projection slice theorem. We will address this last problem by defining an inverse pro-
jection algorithm which reconstructs multidimensional data from its one-dimensional order
projections.

In some ways this is a curious result since, in the continuous case, the inversion requires
either Fourier transform computations or convolutions and back projections and can be ex-
tremely costly. However a close inspection of these stages in the Nussbaumer polynomial
transform algorithm shows that this step can be accomplished using only additions. We will
show, using the constructions underlying the RTA, how this last step can be implemented
using integer matrix multiplication.

3.2. Periodic back projection

Consider Z=3 � Z=3. By a line in Z=3 � Z=3, we mean a maximal cyclic subgroup of
Z=3� Z=3. There are 4 distinct lines in Z=3� Z=3,

L(1; j) = f(0; 0); (1; j); (2; j)g; 0 6 j < 3:

L(0; 1) = f(0; 0); (0; 1); (0; 2)g:

Suppose f 2 L(Z=3 � Z=3). The periodizations of f orthogonal to the 4 lines can be
constructed as follows. Denote by f the lexicographically ordered two dimensional array f

f =

2
666666666664

f(0; 0)
f(1; 0)
f(2; 0)
f(0; 1)
f(1; 1)
f(2; 1)
f(0; 2)
f(1; 2)
f(2; 2)

3
777777777775

:

The periodization orthogonal to L(0; 1) consists of the sums

f(0; 0) + f(1; 0) + f(2; 0);
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f(0; 1) + f(1; 1) + f(2; 1);

f(0; 2) + f(1; 2) + f(2; 2);

which we can write as
(I3 
 1t3)f :

The periodization orthogonal to L(1; 0) consists of the sums

f(0; 0) + f(0; 1) + f(0; 2);

f(1; 0) + f(1; 1) + f(1; 2);

f(2; 0) + f(2; 1) + f(2; 2);

which we can write as
(I3 
 1t3)P (9; 3)f = (1t3 
 I3)f :

Set

S3 =

2
4 0 0 1

1 0 0

0 1 0

3
5

and Z3 = I3 � S3 � S2
3 . The periodization orthogonal to L(1; 1) is given by

(I3 
 1t3)P (9; 3)Z3f = (1t3 
 I3)Z3f

and the periodization orthogonal to L(1; 2) is given by

(I3 
 1t3)P (9; 3)Z2
3f = (1t3 
 I3)Z

2
3 f :

We assume that we know 2
664

I3 
 1t3
1t3 
 I3

(1t3 
 I3)Z3

(1t3 
 Z2
3

3
775 f = Af

and we want to compute f . We will show

ATAf = (9I3 + E3 
 E3)f ;

where E3 is the 3� 3 matrix of all ones.
Since (E3 
 E3)f is known from the sum

2X
j=0

2X
k=0

f(j; k);

We can compute f from ATAf .
The following table lists the matrices in A, their transposes and the products of the matri-

ces with their transposes. ATA is the sum of the matrices in the last column.
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X XT XTX

I3 
 1t3 I3 
 13 I3 
 E3

1t3 
 I3 13 
 I3 E3 
 I3

(1t3 
 I3)Z3 Z2
3(13 
 I3)

2
4 I3 S3 S2

3

S2
3 I3 S3

S3 S2
3 I3

3
5

(1t3 
 I3)Z
2
3 Z3(13 
 I3)

2
4 I3 S2

3 S3

S3 I3 S2
3

S2
3 S3 I3

3
5

Since I + S3 + S2
3 = E3, ATA is as claimed.
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