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ABSTRACT. Harmonic analysis has been the longest lasting and most powerful tool
for dealing with signals and systems which involve both periodic and transient phe-
nomena. Further impact on signal processing was facilitated by what we refer to
as representations in combined spaces. These representations, motivated by Gabor’s
concept of time-frequency information, cells have evolved in recent years into a rich
repertoire of Gabor-type windowed Fourier transforms, relating Fourier analysis to
the Heisenberg group. Such localized bases or frames are useful in the representation,
processing, compression and transmission of speech, images and other natural signals
that, by their very nature, are nonstationary. To incorporate scale that lends itself to
multiresolution analysis as is the case with wavelets, the Gabor scheme is general-
ized to multiwindow Gabor frames. The properties of such sequences of functions
are characterized by an approach that combines the concept of frames and the Zak
Transform. Results on signal representation and reconstruction from partial informa-
tion in the frequency domain are related to and derived, using relevant results obtained
in the time or positional information domain. Some results concerning the represen-
tation of Fourier-transformed discrete time (finite) sequences by partial information
are rederived by exploiting the duality of the Fourier-Stieltjes transform and its in-
verse. Results related to discrete signals are extended to continuous one-dimensional
signals. Signal and image representation by phase only information is considered also
in the context of localized (Gabor) phase, where restoration of magnitude by iterative
techniques is much more efficient than in the case of global (Fourier) phase.
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1. Introduction

The subject of harmonic analysis is extremely broad, as can be concluded, for example,
from the viewpoint of Katzenelson [16], who considers it as the study of objects (functions,
measures, etc.) defined on topological groups. Indeed, groups are relevant to Gabor-type
representations and wavelet-type transforms [25]. Consider the quasi-regular representation

(1.1) T (g)h(x) = kh(g�1x);

where k is a constant that may depend on g, and the independent variable x is an n-dimen-
sional vector.

This representation that satisfies the functional homomorphism

T (g1g2) = T (g1)T (g2)

underlines the decomposition of a function h into a package of waves, i.e., wavelets

fT (g0)h; � � � ; T (gN)h; � � � g:
We say that T (g) is a unitary representation with respect to a measure � if

(1.2) hT (g)f; T (g)hi� = hf; hi� :
A wavelet-type transform is defined, according to the group theoretic approach, as a cross
correlation between a signal f(x) and the wavelets

fT (g)h(x)g
that is defined as follows:

Cf(g) = c

Z
M

f(x)T (g)h�(x)�(x)

= chf; T (g)hi� ;(1.3)

where h� stands for conjugate, c > 0 is a normalization constant, h is a template function (or
a mother wavelet), and �(x) = �(x)dx is an appropriate invariance measure (if one exists)
under the action of the group G.

Given the equation for the analysis, (1.3), we are looking for a way to recover f(x) from
Cf(g), i.e. the equation of the synthesis and the conditions under which it exists.

Most studies of wavelets have been devoted to the special case of the affine group G =
G(A�1; b) of planar scaling and translation. A�1 is in this case a diagonal matrix with entries
a�1i and b is the translation vector. The quasi-regular unitary representation over L2(IRn) is
defined in this case by

(1.4) T (g)f(x) = kf(A(x� b)) ;

where k =
p
J and J = j det(A)j. Gabor-type representations originate from the Heisenberg

group and the associated Weyl operational calculus. As such this representation lacks the
scaling that is characteristic of wavelets. Scaling is, of course, important in the analysis of
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natural signals. However, the explicit harmonic, or spectral nature of Gabor-type represen-
tations is just as important. Thus, it is desirable to incorporate scaling into the Gabor-type
representation. This is accomplished by the generalized Gabor scheme [21], [35]. In this
paper we focus on signal and image representation by multi-window Gabor-type schemes,
where by proper choice of the set of windows we incorporate scaling [35]. We then proceed
to present various aspects of signal and image representation by partial information, mostly
in the context of harmonic analysis. These two subjects are of utmost importance in signal
processing, and have proven to be useful in a wide range of applications (not discussed in
this paper). The two interrelated subjects are also instrumental in gaining insight into the
structure of natural signals, and of images as such. In both cases we discuss the analysis as
well as the synthesis.

2. Multiwindow Gabor-type frames

2.1. Generalized Gabor-type schemes and the Zak transform

Many problems in physics and engineering involve the representation and analysis of
nonstationary signals and processes. Such problems call for the development and application
of sets of functions that are localized in the sense that they rapidly decay in both time (or
position in the case of images) and frequency. Such are the wavelets, Gabor functions and
the Wigner distribution.

The two widely-studied sequences of the so-called wavelets and Gabor functions are spe-
cial cases of the following generalized sequence:

(2.1) sr;m;n(x) = gr(x� nar)�r;m(x);

where fgr(x)g is a sequence of window functions, farg is a set of real numbers and f�r;m(x)g
is a set of kernel functions. In the classical Gabor case [9], there is a single-window function
g(x), with ar = a and b some positive constant, �r;m(x) = ej2�mbx, and m;n 2 ZZ. In the
wavelet-type Gabor case, �r;m(x) = 1, gr(x) = b�r=2g(x=br), ar = abr, r; n 2 ZZ, and g(x)
is a “mother wavelet” function.

Zibulski and Zeevi [35] analyzed such sequences of functions by developing a matrix al-
gebra approach based on the concept of frames and the Zak transform (ZT). The basic results
are presented here without the proofs. The idea of using frames in order to examine the se-
quence of Gabor functions (and affine wavelets as well) was first proposed and implemented
by Daubechies et al. [4]; the so-called Weyl-Heisenberg frames. The ZT of a signal f(x) is
defined as follows [14]:

(2.2) (Zf)(x; u) 4

= �1=2
X
k2ZZ

f
h
�(x+ k)

i
e�j2�uk; �1 < x; u <1;
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with a fixed parameter � > 0. The ZT satisfies the following periodic and quasiperiodic
relations:

(2.3) (Zf)(x; u+ 1) = (Zf)(x; u); (Zf)(x + 1; u) = ej2�u(Zf)(x; u):
As a consequence of these two relations, the ZT is completely determined by its values over
the unit square (x; u) 2 ([0; 1)2). This is the essence of this unitary mapping.

Based on the ZT defined by (2.2), we define the Piecewise Zak Transform (PZT) as a
vector-valued function F (x; u) of size p [34]:

(2.4) F (x; u) =
h
F0(x; u); F1(x; u) : : : ; Fp�1(x; u)

iT
;

where

(2.5) Fi(x; u) = (Zf)
�
x; u+

i

p

�
; 0 6 i 6 p� 1; i 2 ZZ:

The vector-valued function F (x; u) belongs to L2([0; 1) � [0; 1=p); jCp), which is a Hilbert
space with the inner-product:

hF;Gi =
Z 1

0

dx

Z 1=p

0

du

p�1X
i=0

Fi(x; u)Gi(x; u):

Since the ZT is a unitary mapping from L2(IR) to L2([0; 1)2), the PZT is a unitary mapping
from L2(IR) to L2([0; 1) � [0; 1=p); jCp) . As a consequence we obtain the following inner-
product preserving property:Z

1

�1

f(x)g(x)dx =

Z 1

0

Z 1

0

(Zf)(x; u)(Zg)(x; u)dxdu

=

Z 1

0

dx

Z 1=p

0

du

p�1X
i=0

Fi(x; u)Gi(x; u):

This unitary property of the PZT allows us the transformation from L2(IR) to L2([0; 1) �
[0; 1=p); jCp), where issues regarding Gabor-type representations are often easier to deal with
and understand.

2.2. Multi-window Gabor-type expansions

Generalizing the Gabor scheme, by using several window functions instead of a single-
one, the representation of a given signal f(x) 2 L2(IR) is given by:

(2.6) f(x) =
R�1X
r=0

X
m;n

cr;m;ngr;m;n(x);
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where

(2.7) gr;m;n(x) = gr(x� na)ej2�mbx;

and fgr(x)g is a set of R distinct window functions. Such a set can incorporate, for exam-
ple, Gaussian windows of various widths. In this case, with proper oversampling, one can
overcome in a way the uncertainty constraint expressed by the limitations of having either a
high temporal (spatial) resolution and low frequency resolution or vice versa. This type of a
richer Gabor-type representation can be instrumental in applications such as detection of tran-
sient signals [8], or in identification and recognition of various prototypic textures and other
features in images [22]. Clearly, if R = 1 we obtain the single-window Gabor representation.

The characterization of the sequence fgr;m;ng can be divided into three categories accord-
ing to the sampling density of the combined space (the so-called phase space density) defined
by d

4

= R(ab)�1: undersampling - d < 1, critical sampling - d = 1 and oversampling - d > 1.

2.3. Matrix algebra approach for the analysis of frames’ properties

In order to examine the properties of the sequence fgr;m;ng, we consider the operator:

(2.8) Sf =
R�1X
r=0

X
m;n

hf; gr;m;nigr;m;n ;

which is a frame operator if fgr;m;ng constitutes a frame. For the single-window Gabor
scheme, this operator was examined by straightforward methods [5, 13], where application
of the ZT was restricted to the case ab = 1. In [35], Zibulski and Zeevi show that, if
the product ab is a rational number, it might be advantageous to examine this operator in
L2([0; 1)� [0; 1=p); jCp) by using the PZT. A major result of analysis in the PZT domain is the
representation of the frame operator as a finite order matrix-valued function, as formulated in
the following theorem.

THEOREM 1 (Zibulski and Zeevi [35]). Let ab = p=q; p; q 2 IN; and let Sz be the
frame operator of the sequence, which is the PZT of fgr;m;ng. The action of Sz in L2([0; 1)�
[0; 1=p); jCp) is given by the following matrix algebra:

(2.9) (SzF )(x; u) = S(x; u)F (x; u);

where S(x; u) is a p� p matrix-valued function whose entries are given by:

Si;k(x; u) =
1

p

R�1X
r=0

q�1X
l=0

Zgr
�
x� l

p

q
; u+

i

p

�
Zgr

�
x� l

p

q
; u+

k

p

�
;

i; k = 0; � � � ; p� 1;(2.10)

and the vector-valued function F (x; u) is given by (2.4) and (2.5).
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Since the PZT is a unitary transform, (2.9) is an isometrically isomorphic representation
of S (2.8).

Using the PZT and the matrix representation of the operator S, Zibulski and Zeevi [35]
examined the properties of the sequence fgr;m;ng for a rational ab. Since, in the case of
undersampling the sequence fgr;m;ng is not complete, the results presented next are relevant
in the cases of critical sampling and oversampling.

The next theorem examines the completeness of the sequence fgr;m;ng in relation to the
structure of the matrix-valued function S(x; u).

THEOREM 2 (Zibulski and Zeevi [35]). Given gr 2 L2(IR); 0 6 r 6 R � 1; and a
matrix-valued function S(x; u); (x; u) 2 ([0; 1)�[0; 1=p)) as in (2.10), the sequence fgr;m;ng
associated with fgrg; ab = p=q; p; q 2 IN is complete if and only if det(S)(x; u) 6= 0 a.e. on
[0; 1)� [0; 1=p).

The frame bounds of the sequence fgr;m;ngare determined by the eigenvalues of the
matrix-valued function S(x; u). Let

(2.11) �max(S)
4

= ess sup(x;u)2([0;1)�[0;1=p)) max
16i6p

�i(S)(x; u)

(2.12) �min(S)
4

= ess inf(x;u)2([0;1)�[0;1=p)) min
16i6p

�i(S)(x; u);

where �i(S)(x; u) are the eigenvalues of the matrix S(x; u). Then, the upper frame-bound
B = �max(S); and the lower frame-bound A = �min(S): This result yields the following
theorem.

THEOREM 3 (Zibulski and Zeevi [35]).
The sequence fgr;m;ng associated with fgrg, gr 2 L2(IR); 0 6 r 6 R � 1, and ab =
p=q; p; q 2 IN constitutes a frame if and only if 0 < �min(S) 6 �max(S) <1:

An alternative approach to determining whether fgr;m;ng constitutes a frame is as follows.
The following Lemma formulates a necessary and sufficient condition for the existence of an
upper frame bound B <1.

LEMMA 1. The sequence fgr;m;ng associated with fgrg, gr 2 L2(IR); 0 6 r 6 R � 1
and ab = p=q; p; q 2 IN; has an upper frame bound B <1 if and only if (Zgr)(x; u) are all
bounded a.e. on (0; 1]2 (Zgr 2 L1((0; 1]2)).

Theorem 4 below determines whether the sequence fgr;m;ng constitutes a frame, when an
upper frame bound exists, and which does not necessitate calculation of the eigenvalues of
S(x; u).

THEOREM 4 (Zibulski and Zeevi [35]). Given gr 2 L2(IR); 0 6 r 6 R � 1; such
that there exists an upper frame bound B < 1 for the sequence fgr;m;ng associated with
fgrg; and ab = p=q; p; q 2 IN. The sequence fgr;m;ng constitutes a frame if and only if
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0 < K 6 det(S)(x; u) a.e. on [0; 1)� [0; 1=p), where the matrix-valued function S(x; u) is
as in (2.10).

The following theorem concerns tight frames and the matrix representation of the frame
operator. Recall that a set of functions f ng in a Hilbert space H constitutes a tight frame ifX

n

jhf;  nij2 = Akfk2

THEOREM 5 (Zibulski and Zeevi [35]). Given gr 2 L2(IR); 0 6 r 6 R � 1, and
a matrix-valued function S(x; u) as in (2.10), the set of functions fgr;m;ng associated with
fgrg; ab = p=q; p; q 2 IN constitutes a tight frame if and only if S(x; u) = AI a.e., where I
is the identity matrix, and A = q

p

PR�1
r=0 kgrk2.

In order to complete the formalism of representation, one has to obtain the dual frame.
This can be done by using operator techniques [5, 7]. For the single-window scheme the
dual frame fS�1gm;ng is generated by a single dual frame window function [5, 13]. This is,
indeed, also the case for the multi-window scheme. Let fr;m;ng denote the dual frame of
fgr;m;ngṪhen fr;m;ng is generated by a finite set of R dual frame window functions frg:

r;m;n(x) = r(x� na)ej2�mbx; 0 6 r 6 R� 1;

where r = S�1gr. Using the matrix representation (2.9) of the frame operator, the PZT of
r, is:

(2.13) �r(x; u) = S
�1(x; u)Gr(x; u);

that is, �r(x; u); Gr(x; u) are vector-valued functions in

L2([0; 1)� [0; 1=p); jCp)

and S�1(x; u) is the inverse of the matrix S(x; u); for example,

S
�1(x; u) = [det(S)(x; u)]�1adj(S)(x; u):

2.4. The Balian-Low theorem in the case of multi-windows

In the case of a single-window Gabor scheme with critical sampling, i.e. ab = 1, by
choosing an appropriate g(x), the sequence fgr;m;ng can be complete and constitute a frame,
notwithstanding the problems of stability [5]. The sequence fgr;m;ng can, however, be com-
plete and not constitute a frame, in which case the representation is unstable. A classical
example of such an unstable scheme is the one with a Gaussian window function.

In the case of a single window and critical sampling, the following theorem of Balian and
Low indicates that a wide range of well behaved – rapidly decaying and smooth – functions
g(x) are excluded from being proper candidates for generators of frames.

THEOREM 6 (Balian-Low Theorem [2, 5, 6]). . Given g 2 L2(IR), a > 0 and ab = 1, if
the sequence fgm;ng constitutes a frame, then either xg(x) 62 L2(IR) or g0(x) 62 L2(IR).



180 Y.Y. Zeevi / Multiwindow Gabor-type Representations. . .

Note that g0(x) 2 L2(IR), !ĝ(!) 2 L2(IR); where ĝ is the Fourier transform of g.
One of the solutions for this problem is oversampling. In fact, it was proven that in the

case of a Gaussian the fgm;ng constitutes a frame for all ab < 1 [15, 26].
In the case of critical sampling of the multi-window scheme, an interesting question is

whether one can overcome the constraint imposed by the Balian-Low Theorem by utilizing
several windows. According to the following theorem, if all the windows in the set fgrg are
well behaved functions, this is not possible:

THEOREM 7 (Zibulski and Zeevi [35]). Given gr 2 L2(IR); 0 6 r 6 R � 1; a > 0
and R(ab)�1 = 1, if the sequence fgr;m;ng, as in (2.7), constitutes a frame, then either
xgr(x) 62 L2(IR) or g0r(x) 62 L2(IR) for some 0 6 r 6 R� 1.

One of the advantages of using more than one window is the possibility of overcoming
the constraint imposed by the Balian-Low Theorem on the choice of window functions, by
adding an extra window function of proper nature such that the resultant scheme of critical
sampling constitutes a frame. Whether one can find a non-well-behaved window function,
complementary to a set of well-behaved window functions, such that the inclusive set will
generate a frame for critical sampling, depends on the nature of the set of the well-behaved
window functions as indicated by the following proposition.

PROPOSITION 1. Let a set, fgrg; 0 6 r 6 R � 2, of R � 1 window functions be
given. Denote by G0(x; u) the R � 1 � R matrix-valued function with entries G0

r;k(x; u) =

Zgr(x; u+ k
R
); and P(x; u) = G

0(x; u)G0�(x; u). There exists a window function gR�1(x)
such that the inclusive set fgrg; 0 6 r 6 R � 1 generates a frame for the critical sampling
case, if and only if 0 < K 6 det(P)(x; u) a.e. on [0; 1)� [0; 1=R).

An example of R � 1 well-behaved window functions satisfying 0 < K 6 det(P)(x; u)
a.e. on [0; 1)� [0; 1=R), can be constructed in the following manner. Take a window function
g(x) such that the sequence fg(x � n=b)ej2�mx=ag constitutes a frame for ab = R=(R � 1).
Note, that this is an oversampling scheme (1=(ab) = (R � 1)=R < 1) and that there exist,
therefore, well-behaved window functions g(x) such that fg(x� n=b)ej2�mx=ag constitutes a
frame (for example the Gaussian function). Construct the followingR�1 window functions:

gr(x) = g

�
x� rR

b(R � 1)

�
:

Clearly these are well-behaved window functions. Moreover, we obtain

(Zgr)(x; u) = (Zg)(x� r
R

R� 1
; u)

and the matrix-valued function G0(x; u) equals the matrix-valued function G(x; u) which
corresponds to the sequence fg(x � na)ej2�mbxg (which we denote by fgr;m;ng). In this
case fgr;m;ng corresponds to an undersampling scheme. By the duality principle, since
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fg(x� n=b)ej2�mx=ag constitutes a frame, fgr;m;ng constitutes a Riesz basis for a sub-space
of L2(IR). It can therefore be shown that 0 < K 6 det(P)(x; u) a.e. on [0; 1)� [0; 1=R).

2.5. A wavelet-type Gabor scheme

Consider a generalization of the sequence fgr;m;ng , where for each window function
gr(x) there is a different set of parameters ar; br:

(2.14) gr;m;n(x) = gr(x� nar)e
j2�mbrx;

and the sampling density of the combined space is:

d
4

=
R�1X
r=0

(arbr)
�1:

In the case of the single window, the characterization of the sequence fgr;m;ng can be divided
into the three categories of undersampling, critical sampling and oversampling according to
d < 1; d = 1; d > 1, respectively.

In order to analyze this kind of a scheme, we consider an equivalent one with ar = a; br =
b for all r [35] and utilize the tools presented in the previous section for the analysis of the
sequence properties.

Utilizing the degrees of freedom of choosing a different set of parameters ar; br for each
window function gr, we construct a wavelet-type scheme. Let �; � be positive, real numbers.
Given a window function g(x) let

gr(x) = ��r=2g(��rx):

Also, let ar = ��r, and arbr = R=d for all r;where d is the sampling density of the combined
space. We then have

gr;m;n(x) = ��r=2g(��rx� n�)ej2�
mxR

��rd :

In this scheme the width of the window is proportional to the translation step ar, whereas
the product arbr is constant. This scheme incorporates scaling characteristics of wavelets
and of the Gabor scheme with the logarithmically-distorted frequency axis [21]. However, in
contrast with wavelets, this scheme has a finite number of window functions, i.e., resolution
levels, and each of the windows is modulated by the infinite set of functions defined by the
kernel. Each subset for fixed m can be considered as a finite (incomplete) wavelet-type set,
in that it obeys the properties of scaling and translation of a complex prototypic “mother
wavelet”. For example, if R=d is an integer, the mother wavelet is defined by g(x)ej2�

mxR

�d ;
if not, this definition holds within a complex phase. Thus, all the functions corresponding to
each of these mother wavelets are self-similar.

Scaling has been realized as an important property of sets of representation functions
which are used in the analysis of natural signals and images. Hence the importance of this
type of generalization of the Gabor scheme.



182 Y.Y. Zeevi / Multiwindow Gabor-type Representations. . .

3. Signal representation by partial information

3.1. Fourier and related transforms

Let f(t) be a complex function which belongs to L1(�1;1) or L2(�1;1). The ordi-
nary Fourier transform denoted by f̂(!) and its inverse are defined by

f̂(!) =

Z
1

�1

f(t)e�j!tdt(3.1)

f(t) =
1

2�

Z
1

�1

f̂(!)ej!td! :(3.2)

If f̂(!) is zero outside the interval [a; b] then

(3.3) f(t) =
1

2�

Z b

a

f̂(!)ej!td! jaj; jbj <1 ;

is called a band-limited function, i.e., f(t) 2 B

, where B
 is the space of bandlimited

functions.
It is well known from the Paley-Wiener theoremm [23] that such a f(t), with t being

interpreted as a complex variable, is an entire function of exponential type (EFET). Due to
the duality of the Fourier transform and its inverse, if f(t) is time-limited to [�; �], then

(3.4) f̂(!) =

Z �

�

f(t)e�j!tdt :

In this case, with ! being viewed as a complex variable, f̂(!) is an EFET. This duality is
complete if we change the argument sign and multiply (divide) by 2�. If we define a dual
Fourier transform pair (f̂ 0(!); f 0(t)) by

f̂ 0(!) =
1

2�

Z
1

�1

f 0(t)ej!tdt(3.5)

f 0(t) =

Z
1

�1

f̂(!)e�j!td!(3.6)

we have perfect duality between time-limited signals and band-limited signals. If f(t) =

f 0(t), then f̂(!) = 2�f̂ 0(�!). Thus, if f̂(!) is given by

(3.7) f̂(!) = P (!) + jQ(!) = R(!) exp(i#(!)); R(!) > 0 ;

where P (!) is the real and Q(!) the imaginary part, f̂ 0(!) is given by

(3.8) 2�f̂ 0(!) = f̂(�!) = P (!)� jQ(!) :

Alternatively, f̂ 0(!) can be expressed in polar coordinates

(3.9) 2�f̂ 0(!) = R(!) exp(�j#(!)) ;
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where R(!) is the magnitude and #(!) the phase. All subsequent results relating to time-
domain (when the signals are band-limited in frequency) will be used with reference to the
frequency-domain (when the signals are of finite duration in time or finite extent in space),
with proper interpretation of the duality that exists between frequency and time domain rep-
resentations.

In general, the signals in the time or frequency domain will not belong to L1(�1;1) or
L2(�1;1). We will use delta functions to describe discrete time signals or discrete Fourier
spectra. The application of these functions can be mathematically justified by introducing the
Fourier-Stieltjes transform [3], [23],

�̂(!)� �̂(0) =

Z
1

�1

e�j!t � 1

�j! df̂(t)(3.10)

f̂(T )� f̂(0) =
1

2�

Z
1

�1

e+j!t � 1

+j!
d�̂(!) ;(3.11)

where �̂(!) is the cumulative spectrum and f̂(t) the cumulative time function. The Fourier-
Stieltjes integrals are properly defined even when the time or frequency functions contain
discrete components, while �̂(!) and f̂(t) are functions of bounded variation in (�1;1).
The duality of the Fourier-Stieltjes transform and its inverse is self-evident by their definitions
(3.10), (3.11). f̂(t) is bandlimited in the Fourier-Stieltjes sense if �̂(!) is constant outside an
interval [a; b]. In a dual manner we define time-limited signals. In cases where �̂(!) is
unbounded in its variation, more general results should be used, such as Zakai’s definition of
band- (or time-) limited signals [32], or generalized functions [10]. An important result due
to Polya’s theorem [17] or Paley-Wiener-Schwartz [10] ensures that if a signal is bandlimited
in the Fourier-Stieltjes sense in one domain, its counterpart is an EFET.

A discrete complex time signal is defined by

(3.12) x(t) =
X
n

xnÆ(t� tn);

and its Fourier transform by

(3.13) x̂(!) =
X
n

xne
�j!tn :

Using a transformation of the whole complex plane into itself (! and z being viewed as
complex variables),

(3.14) z = ej!

the generalized z-transform is defined by

(3.15) x̂(z) =
X
n

xnz
�tn :
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The ordinary Fourier sequence and z-transforms are derived through uniformly spaced (nor-
malized) sampling tn = n. The same (within the duality) definitions apply to cases where a
discrete signal describes the spectral function.

We use properties of a class of EFET calledB-functions. These include all functions of fi-
nite bandwidth (according to various definitions of bandwidth). The properties ofB-functions
are well established by classical theory of entire functions, and a complete characterization of
their zeros is known. Furthermore, for each B-function there corresponds a unique expansion
into the product of its zeros, determined by the Hadamard factorization [23]:

(3.16) f(s) = csmejks lim
r!1

Y
jsnj6r

(1� s=sn) ;

where f(s) is a B-function, c a complex constant, m an integer, k a real constant, and sn
are the complex roots of f(s). Convergence of (3.16) is conditional on correct order of the
zeros [23]. This form of expansion shows that a band-limited function is uniquely determined
(within some parameters) by all zeros.

3.2. Time and position (i.e. 2D) domains – zero crossings

Logan’s work [17] addresses the issue of whether a one-dimensional bandpass signal
can be uniquely determined by its real zero crossings. His work characterizes analytically
the class of these interesting signals, and proves that a bandpass signal can be uniquely de-
termined by its real zero crossings (within a multiplicative constant) even if it has complex
zeros. Logan’s existence theorem defines the conditions that must be satisfied in order to have
a representation: 1. The bandpass function and its Hilbert transform should have no zeros in
common other than real simple zeros, and 2. The bandwidth of the signal must be less than
an octave. These common zeros of the bandpass signal and its Hilbert transform (free zeros
in Logan’s terminology) are those that may be removed or moved around without destroying
the bandpass property of the signal.

The formal conditions for a real bandpass signal representation by its zero crossings are
stated in Theorem 8, and for real periodic function, as a special case, in Theorem 9.

THEOREM 8 (Real Bandpass Signal Version (Logan [17])).
Let h(t) = Re(f(t)ej!0t) be a real bandpass function, where f(t) is bandlimited and

bounded. h(t) is uniquely determined by its real zero-crossings within a multiplicative con-
stant, if h(t) has no zeros in common with its Hilbert transform ~h(t) = Im(f(t)e

j!0t) (free
zeros) other than real simple zeros, and if the band is less than one octave in width.

THEOREM 9 (Real Periodic Functions (Poggio et al. [20])).
Let hs(t) be a real periodic bandpass function

(3.17) hs(t) =
NX

n=�N

cne
jnt cn = c�

�n ;
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where cn is a discrete complex sequence, and � denotes the conjugate operation. The function
hs(t) is uniquely determined by its real zeros within a multiplicative constant provided hs(t)

and its Hilbert transform ~hs(t), given by

(3.18) ~hs(t) =
NX

n=�N

~cne
jnt ~cn = �j sign(n)cn ;

have no zeros in common except real simple zeros, and cn = 0 for jnj 6 N=2 (or (N +
1)=2 when N is odd ).

It should be noted that these are existence theorems and as such they define the necessary
and sufficient conditions. However, they do not provide an algorithm for signal reconstruction
from its zero crossings, nor do they address the important issue of stability. Algorithms for
one-dimensional signals were put forward by Voelecker and Requicha [31]. These algorithms
were modified by Rotem and Zeevi [24], and applied in reconstruction of images from their
zero crossings.

THEOREM 10 (Bandpass Signals in Two Dimensions).
( Rotem and Zeevi [24]) Let f(x; y) be a real function that satisfies the following conditions:

(i)
R R

1

�1
f 2(x; y)dx dy <1.

(ii)
R
1

�1
f 2(x; y0)dx <1 for a certain y0 (such y0 must exist due to (i)).

(iii)
R
1

1
f 2(xk; y)dy <1 for fxng defined below (see (vii)).

(iv) The two-dimensional Fourier transform of f(x; y)

(3.19) f̂(u; v) =

1ZZ
�1

f(x; y)e�j(ux+�y)dx dy

satisfies the bandwidth condition:

(3.20) f̂(u; �) = 0

�
u < �b [ �a < u < a [ b < u

� < �d [ �c < � < c [ d < u

where

(3.21) 0 < a < b < 2a; 0 < c < d < 2c :

(v) For y0 in (ii), the one-dimensional function of x, f(x; y0), and its Hilbert transform
~f(x; y0) do not have zeros in common except real zeros of degree one.

(vi) For fxng in (iii), the one-dimensional function in y, f(xn; y), and its Hilbert transform
~f(xn; y) do not have zeros in common except real zeros of degree one.

(vii) The set of points fxng constitutes a sampling set for B(a; b) by having density greater
than (b � a)=�. More precisely: if N(L) is the number of sampling points on the
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interval (0; L), then the sufficient condition is

(3.22) lim
L!1

sup
N(L)

L
>
b� a

�
:

Then, if there exists another function g(x; y) which also satisfies conditions (i)–(vii),
and if

(3.23) sign(g(x; y)) = sign(f(x; y));

we have

(3.24) g(x; y) � �f(x; y) :

That is, f and g are identical within a multiple constant. The proof is a direct extension
of Logan’s theorem [17]. Since the one-dimensional functions f(xn; y) and f(x; y0) satisfy
Logan’s conditions, we can construct the functions along vertical lines x = xn, scale them
according to the function on the horizontal line y0, and then, having a sampling set fxng, the
value of f(x; y) is determined (up to a constant) at every point in the plane. Obviously, x and
y can be interchanged in conditions (ii)–(vii) and in the proof [24].

THEOREM 11 (Bandpass in One Dimension, Lowpass in Other).
(Rotem and Zeevi [24]) Let f(x; y) be a real function that satisfies the following conditions:

(i)
R R

1

�1
f 2(x; y)dx dy <1.

(ii)
R R

1

�1
f 2(x; yn)dx <1 for fyng defined below.

(iii) The two-dimensional Fourier transform of f(x; y) satisfies

(3.25) f̂(u; �) = 0

�
u < �b [ �a < u < a [ b < u
� < �c [ � > c

where

(3.26) 0 < a < b < 2a; 0 < c <1 :

(iv) For fyng in (ii), the one-dimensional function in x, f(x; yn) and its Hilbert transform
~f(x; yn) do not have zeros in common except real zeros of degree one.

(v) There exists a straight line ` of angle � to the x axis, where

(3.27) tan � <
2a� b

3c

(by (iii), b < 2a, so � > 0) such that the one-dimensional function f(s) satisfies along
`,

(3.28)
Z

1

�1

f(s)ds <1 :

(vi) The function f(s) and its Hilbert transform ~f(s) do not have zeros in common except
real zeros of degree one.
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(vii) The set of points fyng constitutes a sampling set for B(c).

Then, if there exists another function g(x; y) which also satisfies conditions (i)–(vii), and if

(3.29) sign(g(x; y)) = sign(f(x; y));

we have

(3.30) g(x; y) � �f(x; y) :

In this case, the function is determined on horizontal lines yn and scaled on the diagonal
`. Having fyng, a sampling set for B(c), we can determine the value for every point between
the lines.

The conditions can be interchanged so that the function is determined on multiple diago-
nals and one horizontal line, or another diagonal angle less than � relative to the x axis.

The importance of formulating the conditions of free zeros in the case of a two-dimen-
sional signal (e.g. an image), is in the observation that these conditions have to be satisfied
only on a sparse set of lines in the plane. Furthermore, if the signal is periodic (and every finite
image can be considered as one period of a periodic, infinite signal, thus enabling bandpass
conditions to exist) – only a finite number of lines, out of the infinite number of lines in the
plane, have to satisfy the free-zero conditions. Thus, even if the strict condition of having no
free zero is not realized in an image which satisfies one of the bandpass conditions, the image
is still likely to be represented by its zero crossings.

3.2.1. Reconstruction of images from their zero crossings. The proposed algorithms directly
follow the proofs of Theorems 10 and 11. If the image satisfies the conditions of Theorem 10,
the one-dimensional functions on several rows (or columns) are reconstructed, using an iter-
ative algorithm described below. Then, another one-dimensional function is reconstructed
along a column (or a row), and used for scaling the previous functions. If the image satisfies
the conditions of Theorem 11, the scaling is done along a diagonal at the proper angle. The
rest of the image is reconstructed by interpolation.

The reconstruction algorithm is as follows: Given the clipped signal S, pass it through
an ideal bandpass filter to yield S0. Designating the bandpass operation as Bpf�g, obtain the
initial signal

(3.31) S0 = BpfsignSg
and then continue iteratively

(3.32) Sj+1 = Sn � c[BpfsignSng � S0] :

The algorithm converges when sign(Si) = sign(S). It can be shown that the process of these
successive approximations is contracting. If Logan’s conditions for uniqueness are met, then
Sn � �S, where � is some constant. This algorithm yields good results for most bandpass
signals, with the number of iterations varying from a few up to 100. If sign(Si(nT )) =
sign(S(nt)) for every n, there can still exist another continuous signal S 0(t) where S0(nT ) =
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Si(nT ) but sign(S 0(t)) 6� sign(S(t)), so S 0(t) 6� S(t) and also Si(nT ) 6� �S(nT ). This
ambiguity can be viewed as a result of real-zeros jitter that may also change the location of
the complex zeros [24]. It should be noted, however, that the dependence of the deviation of
the complex zeros on that of the reals zeros is closely related to the question of stability. This
issue is dealt with elsewhere [33].

The error analysis indicates some simple ways to reduce the errors in the scaling factors.
For example, select a column along which the reconstructed signal converged; locate the
maxima of the signal. (On these points the normalized errors are minimal.) Reconstruct the
signals along some rows intersecting the selected column at the peak points and scale them
according to the peak values. Then reconstruct the signals in the other columns. The inter-
section points of each column with the rows form two vectors: that of the (as yet unscaled)
values of the signal along the column and that of the scaled values of the signals along the
rows. Denote the unscaled values along the column by c(k) and the values of the rows by
r(k). If there are M rows, then the optimal scaling factor for the column is

(3.33) a =

PM

k=1 c(k)r(k)PM
k=1 c

2(k)
:

In this way the effect of reconstruction errors in the columns and the rows tends to cancel
out [24].

The same method can be applied to images which are bandpass in one dimension and
lowpass in the other (Theorem 11). The scaling is carried out in this case by reconstruction
on several diagonals intersecting one column at its maxima, scaling the diagonals, and then
scaling the other columns by values of the points of intersection with the diagonals.

In order to have an ideal bandpass (or lowpass) image, the signal should be looked upon
as periodic, the actual image being one period (in the two-dimensional sense). The conditions
of finite Fourier integrals should in this case be modified for periodic signals.

The bandpass operation can be carried out by calculating the FFT of each column and
simply deleting all components out of the passband, and then transposing the image and
repeating the operation. This is equivalent to convolving the image with an infinite, periodic
bandpass filter.

Prior to performing the sign operation, it is recommended to interpolate the signal so as to
reduce the zero-crossings jitter. Interpolation is also needed in creating the diagonals, so that
they can be inclined at an angle of less than 45o. In order to create a bandpass signal along
the diagonal, the signal should also be periodic. This is done by continuing the diagonal
along some periods of the image until it reaches the starting point. Because of the assumed
periodicity of the image, continuing the diagonal means “folding” from bottom to top each
time it reaches the last row.
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3.3. Frequency domain – discrete signals

We now present theorems concerning one-dimensional discrete signal representation by
partial information in the frequency domain. These include the cases of phase only, sampled
phase, one bit of phase, magnitude, and signed-magnitude. The theorems are quoted as stated
in the original papers.

THEOREM 12 (Hayes, Lim and Oppenheim [12]). Let x(n), y(n) be two finite length
real sequences whose z-transforms have no zeros in reciprocal conjugate pairs or on the unit
circle. If #x(!) = #y(!) for all !, then x(n) = �y(n) for some positive constant �. If
tan#(!) = tan#y(!) for all !, then x(n) = �y(n) for some real constant �.

#x(!) and #y(!) are the respective phases of the Fourier sequences of x(n) and y(n).

The results have been extended to complex sequences and the condition prohibiting sim-
ple zeros on the unit circle relaxed.

THEOREM 13 (Hayes [11]). Let x(n), y(n) be complex sequences which are zero outside
the interval [0; N � 1], with z-transforms having no zeros in conjugate reciprocal pairs or
on the unit circle. If M > 2N � 1 and #x(!) = #y(!) at M distinct frequencies in the
interval [0; 2�], then x(n) = �y(n) for some positive real number �. If M > 2N � 1
and tan(#z(!)) = tan(#y(!)) at M distinct frequencies in the interval [0; 2�], then x(n) =
�y(n) for some real number �.

THEOREM 14 (Hayes, Lim and Oppenheim [12]). Let x(n) be a real sequence which is
zero outside the interval [0; N � 1] with x(0) 6= 0 and which has a z-transform with no zeros
in conjugate reciprocal pairs or on the unit circle. Let y(n) be any real sequence which is
also zero outside the interval [0; N�1]. If #x(!) = #y(!) at N�1 distinct frequencies in the
interval (0; �), then y(n) = �x(n) for some positive constant �. If tan(#x(!)) = tan(#y(!))
forN�1 distinct frequencies in the interval (0; �), then y(n) = �x(n) for some real constant
�.

THEOREM 15 (Hayes, Lim and Oppenheim [12]). Let x(n) and y(n) be two real sequen-
ces whose z-transform contain no reciprocal pole-zero pairs and which have all poles, not at
z = 1, inside the unit circle. If the magnitude of the Fourier transforms of x(n) and y(n)
are equal, then x(n) = �y(n+m) for some integer m.

THEOREM 16 (Thm. 2 of Van Hove, Hayes, Lim, Oppenheim).
[29] Let x(n) and y(n) be two real, causal (or anticausal), and finite extent sequences with
z-transforms which have no zeros on the unit circle. If the signed Fourier magnitudes of the
sequences (denoted by G�

x(!) and G�
y (!), respectively, and defined by (3.34) and (3.35)) are

equal for all !, G�
x(!) = G�

y (!) 0 < � < �, then x(n) = y(n). When � = � (or 0), and if
G�

x(!) = G�

y(!) for all ! and x(0) = y(0), then x(n) = y(n).

The signed Fourier magnitude G�
x(!) and Fourier magnitude Rx(!) are related through

(3.34) G�
x(w) = S�

x (!)jRx(!)j;
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where the bipolar function S�
x (!), defined by

(3.35) S�
x (!) =

�
+1 �� � 6 #x(!) < �
�1 otherwise

�

incorporates one bit of phase information at each frequency [19], [29].

THEOREM 17 (Oppenheim, Lim, and Curtis [19]). Let x(n); y(n) be two real, finite ex-
tent, causal (or anticausal) sequences with all zeros outside (inside) the unit circle. If

S�
x (!) = S�

y (!); for all !,

� = 0; � then x(n) = �y(n), where � is a scale factor. (For � = �=2; � is a positive factor.)

4. Duality of results in time and frequency domains

Based on the duality of the Fourier-Stieltjes transform and its inverse, relevant well-
known results for time domain problems, concerned with unique representation of bandlim-
ited functions by partial information, were applied by Shitz and Zeevi [27] in order to de-
rive results about unique representation of a Fourier transformed discrete or continuous time
signal by partial information in the Fourier domain. This approach not only enables the
derivation of new results for the continuous signals, but more importantly, also highlights the
interrelationship of the problems in the two domains.

Shitz and Zeevi [27] have derived, and in various cases extended the results concerning
signal representation by partial information in the frequency domain by application of Lo-
gan’s results (Theorems 8 and 9), and those of Voelecker [30]. In the sequel we only outline
their approach.

Let x(t) be a complex, finite time signal; x(t) equal to zero outside the interval [0; T ). Let
x̂(!) be the Fourier transform of x(t), assumed to exist at least in the Fourier-Stieltjes sense.
Then

x̂(!) =

Z
1

�1

x(t)e�j!tdt =

Z T

0

x(t)e�j!tdt(4.1)

x(t) =
1

2�

Z
1

�1

x̂(!)ej!td!(4.2)

x̂(!) = Px(!) + jQx(!)

= Rx(!) exp(i#x(!)) Rx(!) > 0;(4.3)

where Px(!); Qx(!); Rx(!), and #x(!) are, respectively, the real part, imaginary part, mag-
nitude, and phase of x̂(!).
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4.1. Signal representation by its Fourier phase

THEOREM 18 (Shitz and Zeevi [27]). Let x(t) be a complex finite-time signal the Four-
ier transform of which x̂(�) has no complex conjugate zeros. The signal x(t) is uniquely
determined (within a positive multiplicative constant) by its Fourier phase #x(!); 8!. If x̂(�)
has no conjugate zeros at all (neither complex nor real), then x(t) is uniquely defined (within
a real constant) by tan(#x(!)).

This version of Theorem 12 is valid for continuous signals. Its discrete version, obtained
by using the discrete model

(4.4) x(n) =
X
n

xnÆ(t� tn) 0 6 tn < T

and by interpreting the free zeros (see Theorem 8) as reciprocal conjugate zeros (in the z-
plane), turns out to be an extended version of Theorem 12. In fact, x(n) may under this
generalization be a countable sequence provided 0 < tn < T for all n (tn may, for example,
be a convergent sequence) and �njxnj < 1. This result is evident due to the entireness of
x̂(�) which contains a countable but not necessarily finite number of zeros (3.16). (Theo-
rem 12 is obtained by choosing T = N; tn = N and 0 6 n < N ).

Theorem 2 of Hayes, Lim, and Oppenheim [12], which is the no-poles-in-reciprocal-pairs
version of Theorem 12, follows the latter and can be derived by using an anticausal signal
x(t) 6= 0 for �T < t 6 0, or alternatively by using the transformation z = e�j� instead of
z = ej�.

An alternative and much simpler derivation of Theorem 12 is possible by application of
Theorem 9 which already deals with discrete signals (trigonometric sequences). However,
under this approach the obtained theorem is restricted to discrete signals.

4.2. Signal representation by its sampled Fourier phase

Consider a finite extent complex sequence dn, which equals zero outside the interval
[0; N � 1]. The discrete Fourier transform d̂(!) of dn is given by

d̂(!) =
N�1X
n=0

dne
�jn!

d̂(!) = Pd̂(!) + jQd̂(!) = Rd̂(!) exp(j#d̂(!))(4.5)

where Pd̂(!); Qd̂(!); Rd̂(!), and #d̂(!) are the real part, imaginary part, magnitude, and
phase of d̂(!). The transform is extended to the whole complex plane by replacing ! with
� = ! + ju.

Similarly to our consideration of the continuous case, we define a new sequence �n which
is time constrained, or “bandpass in time”.

(4.6) �n = 0:5(dn�M + d�
�n�M) M > 0:
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Its Fourier sequence

(4.7) �̂(�) =
M+N�1X

n=�(M+N�1)

�ne
�jn�

is alternatively written as the sum of two sequences

(4.8) �̂(�) =M�̂(�) +N�̂(�)

defined by

Ma(�) =
�MX

n=�M�(N�1)

�ne
�jn� = 0:5d̂�(�)ej�M(4.9)

Na(�) =

M+(N�1)X
n=M

�ne
jn� = 0:5d̂(�)e�j�M(4.10)

�̂(�) = Re(d̂(�)e�j�M) = Rd̂(�) cos(M� � #d̂(�)) :(4.11)

�̂(!) is real since dn = d�
�n.

The Hilbert transform �̂
~
(�) of �̂(�) is defined by

�̂
~
(�) =

M+(N�1)X
n=�M�(N�1)

�n
~
e�jn�; �n

~
= i sign(n)�n(4.12)

�̂
~
(�) = Rd̂(�) sin(M� � #d̂(�)) :(4.13)

Now we can apply Theorem 9 [20]. The one octave bandwidth requirement is satisfied by
choosing M > (N � 1). We note that �̂(��) is equivalent to h(t) in the notation of [20].
Interpreting this work in the context of our own notation, it was shown that if �0 is a free zero
of �̂(��), then both this zero and its conjugate ��0 are zeros of N�̂(�) [20, eq. (6)]:

(4.14) N�̂(�0) = N�̂(�
�

0) = 0 :

Derivation of Theorem 13 is straightforward, by application of the formalism provided in
[20]. Accordingly �̂1(�) is the Fourier sequence of another time bandpass sequence �1n
which is zero for jnj 62 [M;M +(N �1)] and defined similarly to (4.6), where dn is replaced
by d1n. It was shown in [20] that

�̂(!)�̂
~
(�)1(!)� �̂

~
(�)1(!)�̂1(!) = Rd̂(!)Rd̂1(!) sin(#d̂(!)� #d̂1(!))

=
N�1X

�(N�1)

ene
�jn!:(4.15)
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This equation can be interpreted as an appropriate convolution of two complex sequences of
length N , one of them being causal and the other anticausal.

It was shown in [20] that the Vandermonde determinant associated with the real roots of
(4.15) is not equal to zero if Logan’s conditions are satisfied, so if #d̂(�) = #d̂1(�) for at least
2N � 1 distinct frequencies in the interval (0; 2�) then en in (4.15) all equal zero. Therefore
sin(#d̂(!)� #d̂1(!)) = 0 for all ! or, equivalently, tan#d̂(!) = tan#d̂1(!) for all !.

Logan’s condition prohibiting complex free zeros, when expressed in the context of z,
dictates a no reciprocal conjugate zeros condition, but still allows zeros on the unit circle. By
the fact that tan#d̂(!) = tan#d̂1(!) and through Theorem 12 we have dn = �d1n for some
real �, and Theorem 13 follows. It is emphasized, though, that in this case zeros on the unit
circle are not allowed except for the case when the points !i at which #d̂(!i) is specified are
all the real zeros of �̂(!), as discussed in the preceding subsection.

Theorem 5 of Hayes, Lim, and Oppenheim [12] is a special case of Theorem 13 consid-
ering a real sequence dn. The phase #d̂(0) at ! = 0 is always zero. It is defined in this case
for at least N distinct frequencies over the interval [0; �), provided M > N � 1. Theorem 4
of [12], which is equivalent to Theorem 3 of [12], can be derived in the same way, using
anticausal sequences or the complex transformation z = e�j� .

4.3. Derivation of Theorem 14

Theorem 14 in its complex version is derived by directly applying Theorem 9. Through
(4.15) we reach the following equality: if #d̂(!) = #d̂1(!), at least for 2N � 1 distinct
frequencies in the interval (0; 2�), then

(4.16)
�̂(!)

�̂
~
(!)

=
�̂1(!)

�̂
~
1(!)

(4.17) tan#d̂(!) = tan#d̂1(!)8! :
Since �̂(�) satisfies Logan’s conditions, it can be uniquely determined within a real constant.
If �̂1(�) also does not possess forbidden free zeros (in Logan’s sense), the theorem is proved
immediately. If, however, it does possess such free zeros, complex, or real, multiple zeros,
then we can identify �̂1(!) within a real function b̂(!) which is positive or negative for all !,
i.e.,

(4.18) �̂1(!) = b̂(!)�̂(!) :

¿From (4.18) we thus realize that �1n is a convolution between �n and some conjugate sym-
metric sequence bn, so that �1n cannot be time-bandpass in the same band as �n, jnj 2
[M;M + (N � 1)]. This is possible only when b̂(!) = �, � being a real constant. Again, if
the equality refers to #d̂(!) = #d̂1(!) for distinct 2N � 1 frequencies in (0; 2�), the signum
function of �̂1(!) and �̂(!) is uniquely defined, so that b̂(!) in (4.18) can be only a positive
function and the multiplication factor � is therefore positive. It should be emphasized that
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free zeros on the real axis of �̂(!) are not permitted according to this theorem, except for the
case when the instants !i, at which #d̂(!i) is specified, are all real zero crossing instants of
�̂(!) (because for zero crossing Logan permits simple free zeros to occur). Theorem 14 is
merely the real version of the theorem derived here, restricted to real sequences.

Theorems 6 and 7 (in Hayes et al. [12]) are dual of Theorem 14 here for pole-only se-
quences. They can be derived using the methods implemented in the case of the dual Theo-
rems 12 and 13 for pole-only sequences.

4.4. Signal representation by Fourier magnitude

We turn back to a continuous causal case where x(t) is defined by (4.2) and x̂(!) is an
analytic signal expressed by

x̂(!) = Px(!) + jQx(!) = Px(!)� j ~Px(!)

= Rx(!) exp(j#x(!)); Rx(!) > 0 :(4.19)

This is an analytic representation of a lower sideband signal in the frequency domain, with
Px(!) being real. Equivalently, (2�)�1x̂(�!) is an analytic representation of an upper side-
band [30], [18].

The question in which cases (2�)�1x̂(�!) [or equivalently, x̂(!)] is determined uniquely
by its magnitude is equivalent to the problem of determining when a single-side-band (SSB)
signal can be unambiguously demodulated (within a sign factor) by an amplitude modulation
(AM) detector. We apply Voelecker’s [30] results directly to (2�)�1x̂(�!), and extend The-
orem 15 to the continuous case. According to Voelecker, x̂(��) [or x̂(�)] cannot have zeros
in either the upper half plane (UHP) or lower half plane (LHP). Substituting � = ! + ju, we
have that u > 0 and u < 0 [or vice versa with respect to x̂(�)]. Accordingly, we have for
continuous signals the following theorem.

THEOREM 19 (Shamai and Zeevi [27]). Let x(t) be a complex finite-time signal whose
Fourier transform x̂(�) possesses no zeros either in the lower half-plane (LHP) or in the
upper half-plane (UHP). Then x(t) is uniquely determined by the Fourier magnitude Rx(!)
within a constant time shift and a complex phase factor eja.

Representing a discrete time signal by (4.4) and applying the complex transformation
z = ej�, we derive the all zero version of Theorem 15 for complex sequences. The zeros at the
origin of z�m, m being an integer, are permitted since they form pure delays. Because these
delays cannot be identified by the magnitude, we have the ambiguity x(n) = �y(n + m).
The formal derivation which includes terms of z�m is obtained directly by defining x(t) to
be zero outside an interval (T0; T ), where T > T0 > 0. The pole-zero version of Theorem 15
is derived by resorting to the same reasoning. However, x(t) should in this case be defined as
a convolution between two appropriate causal (all-zero) sequences one of which has only the
zero terms of Theorem 15 and the other zeros which are the reciprocals of the poles defined
in that theorem. The new signal is also an analytic signal, and Theorem 15 follows.
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Since Theorem 8 of Hayes, Lim, and Oppenheim [12] is just a mirror version of Theo-
rem 15, it can be derived by the same arguments using the lower half-plane instead of the
upper one or vice versa.

4.5. Signal representation by Fourier signed-magnitude

Applying well-known results, obtained in the time domain for continuous band-limited
functions, Shamai and Zeevi [27] derived the following extended version of Theorem 16.

THEOREM 20 (Shamai and Zeevi [27]).
Let x(t) be a complex signal that vanishes outside the interval [0; T ) with x(0) being real.

The signal x(t) is uniquely determined (within x(0) for � = 0; �) by the Fourier signed-
magnitude for any 0 6 � 6 �, provided the Fourier transform x̂(�) contains no multiple real
zeros.

4.6. Signal representation by one bit of Fourier phase

By direct application of Logan’s results [17], a continuous version of Theorem 17, gener-
alized to also incorporate complex signals, was derived.

THEOREM 21 (Shamai and Zeevi [27]).
Let x(t) be a complex signal that vanishes outside the interval [0; T ), with x(0) being real.

The signal x(t) is uniquely determined (within a positive multiplicative constant for � 6= 0; �,
or within a real constant and within x(0) for � = 0; �) by the one bit of Fourier phase,
provided the Fourier transform x̂(�) is zero-free in the closed upper half-plane.

Using the analytic signal

x̂(�)e�j� = P �
x (�) + jQ�

x(�)

= Rx(�) exp(j(#x(�)� �)) ;(4.20)

f(t) in Logan’s notation becomes equivalent to (2�)�1x̂(��)e�j�e�jT�=2, in our case, be-
cause the Fourier transform (not the inverse) of this function is zero outside the interval
(�T=2; T=2). According to Logan’s theorem in the context of our notations

Ref(2�)�1x̂(��)e�j��jT�=2 � ej��g
has only real simple zeros if (2�)�1 x̂(��)e�j(jT�=2+�) is zero-free in the closed lower half-
plane (� = ! + ju; u 6 0).

P �
x (�) is an EFET which is real on the axis � = ! (in fact it is a B-function) and it

determines x(t) except perhaps for x(0). If the zeros of x̂(�) are all in the closed upper
half-plane, P �+�=2

x (�) has only simple real zeros and it is of course determined within a
multiplicative constant by S�

x (�). The latter, in turn, determines the real zero crossings of
Q�
x(�) (utilized in the preceding subsection). S�+�=2

x (�) determines eventually the real zero
crossings of P �

x (�). In fact, the multiplicative constant is positive unless � = 0, � since, as
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was mentioned before, S�
x (�) determines not only the zero crossing instances of P �+�=2

x (�)
but also its sign. In the case of � = �=2, P �

x (�) also determines x(0) which is assumed in
our theorem to be true.

Interpretation of these results for the discrete version is straightforward, by defining x(t)
according to (4.4). The conditions with respect to the z variable are found by using z = ej� .
Since � = ! + ju and u 6 0, all the zeros in z-notations have to be outside or on the unit
circle; those on the unit circle must be simple zeros.

The extended version of Theorem 21 applies to complex sequences, and permits simple
zeros on the unit circle; it is valid also for the generalized z-transform, since the results
are valid for complex [except for x(0)], continuous causal, and finite extent signals. The
anticausal case can be derived by the same procedure, using anticausal finite extent complex
and continuous signals instead of x(t), or alternatively, in the case of discrete signals, by
applying the transformation z = ej� .

4.7. Signal and image reconstruction from localized phase

The subject of one-dimensional signal and image representation by phase information
was extended to localized phase. Porat and Zeevi [21] represented images by Gabor phase
and showed that such representations by partial information preserve edge information of the
original image. Their work was further extended to restoration of magnitude by constrained
iterative techniques [1]. Images (and other signals) can be reconstructed from localized (Ga-
bor-type) phase more efficiently than from global (Fourier) phase. One straightforward sav-
ing is in the number of computational operations (i.e. computational complexity). The other
reason is the much faster convergence rate of the iterative algorithm in the case of localized
phase [1]. The reason for a faster convergence rate remained obscured until recently, when
Urieli, Porat and Cohen [28] proved the following theorem:

THEOREM 22 (Urieli, Porat and Cohen [28]).
Let L and K be two convex sets whose intersection contains the solution of the POCS (pro-

jection onto convex sets) algorithm of iterative orthogonal projections between the two convex
sets.

Given a discrete signal x(n) = [x0; x1; � � � ; xn�1]T , the optimal convergence angle � =
�=4 is obtained if and only if the x(n) is a geometric sequence, i.e.,

x(n) = c[1; q; q2; � � � qn�1]T ;
where c and q are scalars. For all other signals � < �=4 (i.e. slower convergence).

How does Theorem 22 relate to the convergence rate reported in [1]? As Urieli et al. [28]
observed, if a signal x is sequentially bisected into smaller segments, the ratio of monotonic
to nonmonotic sequences increases. Since smaller segments are more likely to be monotonic
than larger segments, they are likely to more closely correspond to geometric sequences.
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This finding provides an additional good reason for further investigation of natural sig-
nals’ representation in combined spaces, such as the Gabor-type and wavelet representations.
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