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Abstract. Natural images can be modelled as patchworks of homogeneous textures with
rough contours. The following stages play a key role in their analysis:

- Separation of each component

- Characterization of the corresponding textures

- Determination of the geometric properties of their contours.
Multifractal analysis proposes to classify functions by using as relevant parameters the di-
mensions of their sets of singularities. This framework can be used as a classification tool in
the last two steps enumerated above. Several variants of multifractal analysis were introduced,
depending on the notion of singularity which is used. We describe the variants baséttien H
andLP regularity, and we apply these notions to the study of functions of bounded variation
(indeed the BV setting is a standard functional assumption for modelling images, which is
currently used in the first step for instance). We also develop a multifractal analysis adapted
to contours, where the regularity exponent associated with points of the boundary is based on
an accessibility condition. Its purpose is to supply classification tools for domains with fractal
boundaries.
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1. Mathematical modelling of natural images

In order to develop powerful analysis and synthesis techniques in image pro-
cessing, a prerequisite is to split the image into simpler components, and to
develop some classification procedures for these components. Consider the
example of a natural landscape: It consists of a superpositionfief et
pieces which present some homogeneity. Perhaps there will be a tree in the
foreground, mountains in the background and clouds at the top of the picture.
An efficient analysis procedure should first be able to separate these compo-
nents which will display completely unrelated features and analyse each of
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them separately, since they will individually present some homogeneity. Con-
sidering an image as a superposition of overlapping components is referred to
as the “dead-leaves” model, introduced by Matheron. See (Matheron, 1975)
and (Bordenave et al., 2006) for recent developments). Each piece appears as
a relatively homogeneous part which is “cut” along a certain slfap€he
homogeneous pieces are the “textures” and their modelling can be performed
by interpreting them as the restriction on the “sha@edf random fields of

R? with particular statistical properties (stationarity,...). If a statistical model
depending on a few parameters is picked, then one needs to devise a robust
statistical test in order to estimate the values of these parameters. Afterwards,
the test can be used as a classification tool for these textures. Furthermore,
once the relevant values of the parameters have been identified, the model can
be used for simulations. The procedure is now standard to classify and gener-
ate computer simulations of clouds for instance (Arneodo et al., 2002; Naud
etal., 1997).

Another problem is the modelling of the shap&hindeed natural scenes
often do not present shapes with smooth edges (it is typically the case for the
examples of trees, mountains or clouds that we mentioned) and the challenge
here is to develop classification tools for domains with non-smooth (usually
“fractal”) boundaries. Until recently, the only mathematical tool available was
the box-dimension of the boundary (see Definition 3.1) which is an important
parameter but nevertheless very ifisient for classification (many shapes
share the same box dimension for their boundary, but clearly display very
different features).

Let us come back to the separation of the image into “simpler” com-
ponents that present some homogeneity. It can be done using a “global”
approach: The image is initially stored as grey-levils, y) and is approx-
imated by a simple “cartoonli(x,y). What is meant by “simple” is that
textures will be replaced by smooth pieces and rough boundaries by piecewise
smooth curve’s The building of a mathematical model requires summarizing
these qualitative assumptions by choosing an appropriate function space set-
ting. In practice, the spad&V (for “bounded variation”) is usually chosen. A
functionf belongs tdBV if its gradient (in the distribution sense) is a bounded
measure (the namBV refers to the one-dimensional case where a function
f belongs toBV if the sums}; |f(X+1) — f(X)| are uniformly bounded, no
matter how we chose the finite increasing sequegicéndeed, the spadgV
presents several of the required features : It allows only relatively smooth tex-
tures but, on the other hand, it allows for sharp discontinuities along smooth
lines (or hypersurfaces, in dimension 2). It is now known that natural

1 This kind of simplification was anticipated by Hé&rn his famous “Tintin” series and by
his followers of the Belgian “la ligne claire” school.
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images do not belong t8V (Gousseau and Morel, 2001), but this does
not preventBV being used as a model for the “sketch” of an imafas
decomposed as a surk v whereu € BV andv is an approximation error

(for instance it should have a sm&f norm) and one uses a minimization
algorithm in order to findl. In such approaches, we may expect that the dis-
continuities of the “cartoonti will yield a first approximation of the splitting

we were looking for. Such decompositions are referred tauasV’ models

and lead to minimization algorithms which are currently used; they were
initiated by L. Rudin and S. Osher, and recent mathematical developments
were performed by Y. Meyer, see (Meyer, 2001) and references therein. Once
this splitting has been performed, one can consider the elementary compo-
nents of the image (i.e. shapes that enclose homogenous textures) and try to
understand their geometric properties in order to obtain classification tools; at
this point, no a priori assumption on the function is required; one tries to char-
acterize the properties of the textures and of the boundaries by a collection
of relevant mathematical parameters; these parameters shoufibigvely
computable on real images in order to be used as classification parameters
and hence for model selection. Multifractal analysis is used in this context:
It proposes dferent pointwise regularity criteria as classification tools and it
relates them to “global” quantities that are actually computable.

The diferent pointwise quantities (regularity exponents) which are used
in multifractal analysis are exposed in Section 2, where we also recall their
relationships.

In Section 3, we deal with “global” aspects. The tools (fractional dimen-
sions) used in order to measure the sizes of sets with a given pointwise
regularity exponent are defined (they are referred to as spectra of singu-
larities). We also draw a bridge between these local analysis tools and the
global segmentation approach described above. The implications &\he
assumption on the multifractal analysis of a function are derived. The results
of this section supply new tools in order to determine if particular images (or
homogenous parts of images) belondié.

In Sections 4 and 5 we concentrate on the analysis of domains with fractal
boundaries. Section 4 deals with general results concerning the pointwise
exponents associated with these domains and Section 5 deals with their multi-
fractal analysis. Apart from image processing, there are other motivations for
the multifractal analysis of fractal boundaries, e.g. in physics and chemistry:
turbulent mixtures, aggregation processes, rough surfaces, stedznd
Melot, 2005) and references therein.
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2. Pointwise smoothness

Each variant of multifractal analysis is based on a definition of pointwise
smoothness. In this section, we introduce thedént definitions used, ex-
plain their motivations and their relationships.

2.1. POINTWISE EXPONENTS FOR FUNCTIONS AND MEASURES

The most simple notion of smothness of a function is supplie€bylif-
ferentiability. Recall that a bounded functidnbelongs toC1(RY) if it has
everywhere partial derivativegz—_ which are continuous and boundegX
differentiability fork > 2 is defined by recursiorf. belongs toCK(RY) if it
belongs taC1(RY) and each of its partial derivativ% belongs taCk-1(RY).
Thus a definition is supplied foruniform smoothness when the regularity
exponenk is an integer. Taylor’s formula follows from the definition dE*
differentiability and states that, for amy € RY, there exist€ > 0,6 > 0 and

a polynomialPy, of degree less thaksuch that

if [x—X| <6 then [f(X) = Py,(X)| < Clx— xol.

This consequence @K differentiability is just in the right form to yield a
definition of pointwisesmoothness which also makes sense fi@ctional
orders of smoothness; following a usual process in mathematics, this result
was turned into a definition.

DEFINITION 2.1. Leta > 0, and % € RY; a function f: RY — R is C*(xo)
if there exists C> 0, 6 > 0 and a polynomial R, of degree less thaa such
that

if X=Xl <6, then [f(X)—Px(X)|<CIx— x| Q)

The Holder exponent of f apxs hi(Xg) = sup{a: f is C¥(xp)}.

Remarks: The polynomialPy, in (1) is unique and, itv > 0, the constant
term of Py, is f(Xo); P is called the Taylor expansion dfat xo of ordere;

(1) implies thatf is bounded in a neighbourhood xf; therefore, the Eider
exponent is defined only for locally bounded functions; it describes the local
regularity variations off. Some functions have a constanblter exponent:
They display a “very regular irregularity”. A typical example is the Brownian
motion B(t) which satisfies almost surelyx, hg(x) = 1/2.

Holder regularity is the most widely used notion of pointwise regularity
for functions. However, it diers several drawbacks; one of them appeared at
the very beginning of the introduction of multifractal analysis, in the mid-
eighties; indeed, it was introduced as a tool to study the velocity of tur-
bulent fluids, which is not necessarily a locally bounded function; and, as
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mentioned above, &lder regularity can only be applied to locally bounded
functions. Several mathematical drawbacks were already discovered at the
beginning of the sixties by Caldam and Zygmund (Cakton and Zygmund,
1961). Another one which appeared recently is that thiletr exponent of

a function which has discontinuities cannot be deduced from the size of its
wavelet coéficients. This is a very serious drawback for image analysis since
images always contain objects partly hidden behind each other (this is re-
ferred to as the “occlusion phenomenon”), and therefore necessarily display
discontinuities. 1B is a ball, let

1 1/p
f llgeo=sup[f(X), and,if 1< , 0 f =—— f|Pdx]
I flls, erIsol (X p<oo, |l fllgp (VoI(B)fgl X )

finally let B = {x : |X— Xg| < r} (not mentioningxp in the notations won't
introduce ambiguities afterwards). A clue to understand how the definition
of pointwise Hdlder regularity can be weakened (and therefore extended to
a wider setting) is to notice that (1) can be rewritfefi — Py, g, o< Cr®.
Therefore, one obtains a weaker criterion by substituting in this definition the
local L* norm by a localLP norm. The following definition was introduced
by Caldedbn and Zygmund in 1961 (Caidon and Zygmund, 1961).

DEFINITION 2.2. Let pe [1, +); a function f: RY — Rin LI'?)C belongs

to TP(xo) if 3R, C > 0 and a polynomial R, of degree less tham such that
Vr <R || f =Py llg.p< Cre. 2)
The p-exponent of f abis hf(xo) = sufa : f € TP (xo)}

It follows from the previous remarks that thedlder exponenhs(xg) coin-
cides withh (Xo). Note that (2) can be rewritten

vr <R, 1£(X) — Py, (X)|Pdx < CroP+d, (3)
Br

Thesep-smoothness conditions have several advantages when compared with
the usual Hlder regularity conditions: They are defined as sooh bslongs
locally to LP and thep-exponent can be characterized by conditions bearing
on the moduli of the wavelet céiicients of f (Jafard, 2006). Note that the
TP(x0) condition gets weaker ag goes down, and therefore, for a given
X0, p h?(xo) is a decreasing function. Let us now focus on the weakest
possible case, i.e. whem = 1. First, recall that, iff is a locally integrable
function, thenxg is a Lebesgue poinof f if

1
VolI(B)

f (f(X) - f(xp))dx— 0 whenr — O. (4)
By
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Therefore, one can see tfié(xo) Smoothness criterium as a way to quantify
how fast convergence takes place in (4) wikgrs a Lebesgue point df. The

LY norm of f — Py, expresses aaveragesmoothness of: How close (in the
mean) aref and a polynomial. Sometimes one rather wants to determine how
large fis in the neighbourhood ofy; then the relevant quantity is the rate of
decay of the local! normsz(XO’r) |f(X)[dx whenr — 0. This quantity can

also be considered for a nonnegative meagtirstead of ari.! function. In
that case, one considefB%(0 N du = u(B(xo, r)). This leads us to the following

pointwise size exponent.

DEFINITION 2.3. Let p € [1, +0); a nhonnegative measuye belongs to
S« (Xp) if there exist positive constants R and C such that

¥r <R du < Cr«. (5)
Br

The size-exponent pfat xg is

l0gu(B(o.1))

$.(%0) = SUHa : u € Se(x0)} = lim inf oar

If f € L, then $(Xo) is the size exponent of the measutie=d| f (X)|dx.

If f e L and ifPy, in (3) vanishes, then the definitions of the 1-exponent and
the size exponent of coincide except for the normalization factdrin (3)

which has been dropped in (5); thus, in this cag€x) = h}(xo) + d. This
discrepancy is due to historical reasons: Pointwise exponents for measures
and for functions were introduced independently. It is however justified by
the following remark which is a consequence of two fagtéx, y]) = |F(y) -

F(x), and the constant term &%, is F(Xo).

Remark: Letu be a non-negative measureRisuch thau(R) < +c0 and let
F be its repartition function defined By(X) = u((—o0, X]); if the polynomial
Py in (3) is constant, thes,(Xo) = ht(Xo).

One does not subtract a polynomial in the definition of the pointwise ex-
ponent of a measure because one is usually interested in the size of a measure
near a point, not its smoothness. Consider the very important case where
u is the invariant measure of a dynamical system; then the size exponent
expresses how often the dynamical system comes back clogewereas
a smoothness index has no direct interpretation in terms of the underlying
dynamical system.

We will need to usd@ ?(xo) smoothness expressed in a slightlfefient form:
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PROPOSITION 2.4.Let f e LP

F P anda € (0,1]; let f, = VOI(B) fBr f(x)dx.
Then

o \UP
feTP(x) = ( ; dx) < Cre, (6)

1
VolI(B,)

Proof. Suppose thaf € TP(x) and letA be the constant polynomial which
appears in the definition &P; then

f A= VoI(Br f(f(x) A)dX;

Holder’s inequality yields thatf, — A| is bounded by

1/p
VOI(Br [f 1109 - A|de} (VOI(B,))¥% < C(Vol(B,)) a2/ = Cro

Thus,f, = A+O(r®). As a consequence, if we replaééy f, in the quantity
to be estimated in the definition ®f, the error iSO(r).

Conversly, suppose that (6) is true. lret’ be such that &< r < r’. We
have

If = Tlieg,) < Cro*¥Pand |If = T lle,) < C)* /P
Sincer <1, [If - f,llLeg,) < C(r")**%'P; therefore
Ife = Tl < C(r)* /P,

so that|f,, — f,| < C(r’)* . It follows that f, converges to a limif, whenr
goes to 0. Moreovef, = f, + O(r®) and therefore one can take= f,.

2.2. POINTWISE EXPONENTS FOR BOUNDARY POINTS OF DOMAINS

We will show how to draw distinctions between points of the boundary of a
domainQ, by associating to each of them an exponent, which may change
from point to point along the boundary. This will allow us afterwards to
perform a multifractal analysisof the boundary, i.e. to use as a discrimi-
nating parameter betweenfldgirent types of boundaries the whole collection

of dimensions of the corresponding sets where this exponent takes a given
value. Let us check if the exponents previously introduced can be used; the
function naturally associated with a domdnis its characteristic function

1 (X) which takes the value 1 an and 0 outsid€. The Hdlder exponent of

1, cannot play the role we expect, since it only takes two valsesoutside
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0Q and 0 orvQ. Let us now consider thp-exponents and the size exponent.
We start by a toy-example: The domad c R? defined by

(x,y) € Q, ifandonlyif |y <[x*.

At the point (Q0) one immediately checks that, df > 1, the p-exponent

takes the valuea( — 1)/p, and the size exponent takes the vadue 1. On

the other hand, if < @ < 1, the p exponent takes the value la)/(ap)

but the size exponent is always equal to 2. This elementary computation
shows the following facts: The-exponent of a characteristic function can
take any nonnegative value, the size exponent can take any value larger than
2; the 1-exponent and the size exponent gifeedent types of information.

The following proposition, whose proof is straightforward, gives a geometric
interpretation for the size exponent of 1L

PROPOSITION 2.5.LetQ be a domain oRY and let % € dQ; Tl € S,(xo)
if and only ifdR > 0and C> Osuch thatVr < R VolQ N B(xp, r)) < Cr®.

The following definition encapsulates this geometric notion.

DEFINITION 2.6. A point % of the boundary of2 is weaka-accessible if
there exist C> 0 and ry > 0 such thatvr < ro,

Vol (©Q N B(Xo, 1)) < Cro+d. (7)

The supremum of all values of such that(7) holds is called theweak
accessibility exponent ab. We denote it byt (Xo).

Thusaw(Xo) is a non negative number and is nothing but the size exponent
of the measure d(x)dx shifted byd. The following proposition of (X&ard

and Melot, 2005) shows that, for characteristic functions, aliHexponents
yield the same information and therefore one can keep only the 1-exponent.

PROPOSITION 2.7.LetQ be a domain oR9Y and let x € dQ; then1l, €
T2(xo) if and only if eitherlly € S, p(Xo) OF Loe € Sa/p(Xo), WhereQ®
denotes the complement@f

Following the same idea as above, one can also defibdaderal ac-
cessibility exponent of a domain which is the geometric formulation of the
1-exponent of the functiondl see (J&ard and Melot, 2005).

DEFINITION 2.8. A point » of the boundaryQ is bilaterally weaka-
accessible if there exist € 0 and rp > 0 such thatvr < rg,

min|Vol (Q N B(xo, 1)) , VoI (Q° N B(xo,r))| < Cre+d. (8)

The supremum of all values afsuch that(8) holds is called thebilateral
weak accessibility exponent &§. We denote it bg,(Xo).



MULTIFRACTAL ANALYSIS OF IMAGES 9

Remark 1: It follows immediately from the above definitions that the bi-
lateral exponenBy(Xp) is the supremum of the unilateral exponemigxg)
associated witf2 and its complemen®®. In practice, using unilateral or
bilateral exponents as classification tools in multifracal analysis will be ir-
relevant when2 and Q° have the same statistical properties. It is the case
when they are obtained by a procedure which makes them play the same
role (for instance ifdQ is the edge of the fracture of a metallic plate). On
the other hand, unilateral exponents should yieltedent types of informa-

tion when the roles played b and its complement are very dissymetric
(electrodeposition aggregates for instance).

Remark 2: If Q € BV, then, by definition grad(d) is a measure, and
therefore one could also consider an additional exponent, which is the size
exponent ofigrad(1,). We won't follow this idea because, in applications,
one has no direct access to the measure gegd@hd we want to base our
analysis only on information directly available fram

We will also use the following alternative accessibility exponents.

DEFINITION 2.9. A point x of the boundary of2 is stronga-accessible if
there exist C> 0 and ry > 0 such thatvr < ro,

Vol (€ N B(xg, 1)) > Cro+d, 9)

The infimum of all values af such that(9) holds is called thestrong acces-
sibility exponent atxy. We denote it bys(Xg). A point % of the boundary of
Q is bilaterally stronga-accessible if there exist € 0 and rp > 0 such that
VYr <o,

min|Vol (Q N B(xo, r)) , Vol (Q° N B(xo,r))| > Cre+d, (10)

The infimum of all values af such that(10) holds is called thebilateral
strong accessibility exponent af. We denote it bgs(xo).

The following result yields alternative definitions of these exponents.
PROPOSITION 2.10.Let xe 9Q; then

logVol(Q N B(x,r)) | ag(¥)+d = lim Su|OIogVoI (Q N B(x, r))‘
logr r—0 logr

Similar relations hold for the indices,(X) andBs(X).

aw(X)+d = liminf
r—0

Other exponents associated with boundaries have been introduced; they were
based on the notion oflensity which we now recall.
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DEFINITION 2.11. Let x € Q; the density of2 at xg is

Vol(B(xp, r) N Q)
Vol(B(Xg, r))

This limit does not necessarily exist everywhere; thus, if one wants to obtain
an exponent which allows a classification of all pointso6f, the upper
density exponenD(Q, xo) or the lower density exponent (R, xo) should
rather be used; they are obtained by taking in (11) respectively a lim sup or
a lim inf. The set of points wherB(Q, xp) differs from 0 and 1 is called the
measure theoretic boundargee Chap. 5 of (Ziemer, 1989). This allows to
introduce topological notions which have a measure-theoretic content. The
measure theoretic interioof Q is the set of points satisfyinB(Q, o) = 1;

the measure theoretic exterias the set of points satisfyinB(Q, xg) = 0.

See Chap. 5 of (Ziemer, 1989) for more on these notions which bear some
similarities with the ones we will develop in Section 4.1. Note that points
with a positive weak-accessibility exponent all have a vanishing density, so
that density exponents are a way to draw a distinction betwékametit points

of weak-accessibility 0. This refinement has been pushed even further when
Q has a finite perimeter (i.e. whemIe BV). Points of density /2 can be
classified by considering points where the boundary is “close” to a hyper-
plane (see (Ziemer, 1989) for precise definitions); such points constitute the
“reduced boundary” introduced by de Giorgi. We will come back to these
classifications in Section 4.2.

D(Q, Xo) = lim (11)

3. Fractional dimensions, spectra and multifractal analysis

3.1. FRACTIONAL DIMENSIONS

In order to introduce global parameters which allow to describe the “fractal-
ity” of the boundary of a domain, we need to recall the notions of dimensions
that will be used. Their purpose is to supply a classification among sets of
vanishing Lebesgue measureRf.

The simplest notion of dimension of a dét(and the only one that is
computable in practice) is the upper box-dimension. It can be obtained by
estimating the number of dyadic cubes that intergedRecall that adyadic
cubeof scalej is of the form

[ﬁ k1+1)>< X[E’kdfl
210 2

o 2 ) where k = (ki, ... k) € Z%

¥ denotes the set of dyadic cubes of sgale
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DEFINITION 3.1. (Upper box-dimension)et E be a bounded set iR¢
and N(E) be the number of cubese 7j that intersect E. The upper box-
dimension of the set E is defined by

. log(N;(E))
= | _
AE) 'jrlfip log(2))

This notion of dimension presents two important drawbacks. The first one is
that it takes the same value for a set and its closure. For example, the upper
box-dimension of the se&® of rational numbers is equal to 1, but we would
expect the dimension of a countable set to vanish. The second one is that it is
not ac-stable index, i.e. the dimension of a countable union of sets usually
differs from the supremum of the dimensions of the sets. In order to correct
these drawbacks, a very clever idea, introduced by C. Tricot (Tricot, 1982),
consists in “forcing” ther-stability as follows:

DEFINITION 3.2. (Packing dimension)et E c RY; the packing dimension
of Eis

dimp (E) = inf | SUudA(E)]; Ec | JEi],
ieEN ieN
where the infimum is taken on all possible “splittings” of E into a countable
union.
The Hausddf dimension is the most widely used by mathematicians.

DEFINITION 3.3. (Hausddf dimension)Let E ¢ RY ande > 0. Let us
introduce the following quantities : Leta N; if A = {4i} iy IS @ countable
collection of dyadic cubes of scales at least n which forms a covering of E,
then let

H(E.A) = Y diam@)®, and Hg(E) = inf (HS(E, A)) ,
ieN
where the infimum is taken on all possible coverings of E by dyadic cubes of
scales at least n. The-dimensional Hausdgfmeasure of E is

HYE) = nIin+1 Hy (E).
The Hausdgf dimension of E is
dimy (E) = sup(a@ > 0 ; H*(E) = +o0) = inf(a >0 ; HYE) =0) .

Remark 1. Hausdoff measures extend to fractional valuesdathe notion
of d-dimensional Lebesgue measure, inde8 is the Lebesgue measure in
RY. The Hausddf dimension is an increasing-stable index.
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Remark 2. The following inequalities are always true, see (Falconer, 1990).

0 < dimy (E) < dimp (E) < A(E) < d.

3.2. SPECTRA OF SINGULARITIES

In all situations described in Section 2, a “pointwise smoothness function” is
associated to a given signal (this may be for example thidét exponent, the
p-exponent or the size exponent). In the case where the signal is irregular, itis
of course impossible to describe this function point by point. That is why one
tries to obtain a statistical description, by determining only the dimensions
of the sets of points with a given exponent. This collection of dimensions,
indexed by the smoothness parameter is calledsipectrum of singularities
Actually, two kinds of spectra are used, depending on whether one picks the
Hausdoff or the packing dimension, see Theorems 5.3 and 5.4 for estimates
on such spectra. In the next section, we will estimatepspectrum of BV
functions. Thisp—spectrumdf(H) is the Hausddf dimension of the set of
points whosep-exponent isH. If p = co, d°(H) is simply denoted byl (H).

It denotes the Hausdfrdimensions of the sets of points where thélder
exponent iH, and is called the spectrum of singularitiesfof

3.3. MULTIFRACTAL ANALYSIS OF BV FUNCTIONS

We saw that the spadBV is currently used in order to provide a simple
functional setting for “sketchy” images, i.e. images which consist of piece-
wise smooth pieces separated by lines of discontinuities which are piecewise
smooth. This approach is orthogonal to the multifractal point of view; indeed,
multifractal analysis makes no a priori assumption on the function considered
and, therefore, is relevant also in the analysis of non smooth textures and
irregular edges. In order to go beyond this remark, it is important to under-
stand the implications of thBV assumption on the multifractal analysis of
a function. They strongly depend on the number of variablels tierefore,
though our main concern deals with functions definedrdn considering
the general case of functions defined Bfwill explain some phenomena
which, if dealt with only ford = 1 or 2, might appear as strange numerical
coincidences.

We start by recalling the alternative definitions of the spR¥éRY). Let
Q be an open subset & and f € L1(RY). By definition,

leﬂ:sup{ffdivg,g=(gl,---,gd>ecé(sz,Rd) andngnwsl},
Q Q
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where divg = 3¢, 5.
This notation is justified as follows: An integration by parts shows that if
f e CY(RY), [,IDf| = [, Igradfldxwhere grad = ((,?—Xfl,---,% .

DEFINITION 3.4. LetQ c RY, and fe LY(RY); f belongs to BQ) if

f|Df|<+oo.
o)

Recall that the alternative definition i§:e BV(Q) if f € L1(Q) and gradf
(defined in the sense of distributions) is a Radon vector-measure of finite
mass.

What is the correct setting in order to perform the multifractal analysis of
a BV function? In dimension 1, the alternative definition in terms of Radon
measures immediately shows tha¥ function is bounded (indeed a Radon
measure is the ffierence of two positive measures and the primitive of a
positive measure of finite mass is necessarily bounded). Therefore, one can
expect that thBV assumption has a consequence on the “usual” spectrum
d¢(H) based on the Blder exponent. On the other handdif> 1, then a
BV function need not be locally bounded (consider for instance the function
W in a neighborhood of 0, forr small enough). A simple superposition
argument shows that it may even be nowhere locally bounded; therefore,
we cannot expect thBV assumption to yield any information concerning
the “usual” spectrum of singularities in dimension 2 or more. The following
Sobolev embeddings precisely determine for which valugsadBV function
locally belongs td_P (see (Giusti, 1984)).

PROPOSITION 3.5. ((Giusti, 1984)et d* = d%l (d* is the conjugate
exponent of d). If € BV(RY) then

1l sC(d)f|Df|. (12)

Moreover, if B= B(xo,r) and fg = ﬁ(B) Jg F(9dx,

||f—TB||Ld*(B)§C(d)fB|Df|. (13)

Since (12) states th@V(RY) is embedded irL9" (RY), we can infer from

this proposition that the “right” value gb in order to study the pointwise
smooothness of functions BV(RY) is p = d*. The following result actually
gives estimates of the*-spectrum oBV functions.
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THEOREM 3.6. Let f € BV(RY). The d-spectrum of f satisfies
d'(H)<H+@d-1).

Proof of Theorem 3.61f d = 1, f is the diference of two increasing func-
tions. The theorem is a consequence of the classical bd(yl < H for
probability measures, see (Brown et al., 1992) and the remark thdt<f
1, the size exponent of a positive measure and tbklét exponent of its
primitive coincide. We can therefore assume tthat 2.

We can clearly suppose theit < 1. Let us considef on the unit cube
[0,1]9 and letj > 0. We split this cube into¥ dyadic cubes of width 2.
If Ais a dyadic cube irFj, let TV(2) denote the total variation df on the
ball B; = B(u,, Vd2-1) wherey, is the center oft, i.e. TV(1) = fBﬂ IDf].

Lets > 0 and denote byA(g, j) the set oft’s such thafl V(1) > 2791 and by
N(s, j) its cardinal. Since only a finite numb€&Kd) of balls B, overlap,

NG )2 < TV(/I)SC(d)f|Df|.

2EA(,])
Therefore
N(s, j) < C2°). (14)

Let xo be such that it only belongs to a finite numberAg®, ). Let 1;(xo)
denote the dyadic cube of width 2which containsk. For j large enough,
TV(2j(x0)) < 27%. If B = B(xo, Vd2-0+D), (13) implies that

||f—?B||Ld*(B)SCL|Df|SC BlIDfISCZ_‘Sj;

thus, using Proposition 2.4, € T(?jd/d*(XO) (= TY,.,(X)). Denote

As = limsupA(, j) .
J—+o0
The setAs consists of points that belong to an infinite number of 8é#s]).
Then, (14) implies that dipgp(As) < 6. If xg ¢ As, we just showed that e
Tgfdﬂ(xo). It follows that the set of points af*-exponents — d + 1 is of
Hausdoff dimension at mosé. In other words,d‘f’* (6 —d+1) <4, hence
Theorem 3.6 holds.

Remark: Let us picks > d — 1 but arbitrarily close ta — 1. We saw that\s
has dimension less tharand if xg ¢ As, thenxg belongs tng* forana >0
so thatxg is a Lebesgue point df. It follows that, if f is a BV function, then
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the set of points which are not Lebesgue point§ bs Hausddf dimension
at mostd— 1. Related results are proved in Section 5.9 of (Evans and Gariepy,
1992) (see in particular Theorem 3).

Theorem 3.6 only gives information on thi&-exponent and cannot give
additional information om-regularity forq > d* since a function oBV(RY)
may nowhere be locally ih9 for such values of.. However, images are just
grey-levels at each pixel and therefore are encoded by functions that take
values between 0 and 1. Therefore, a more realistic modelling is supplied by
the assumptiorf € BV N L. Let us now see if this additional assumption
allows us to derive an estimate on tpspectrum.

LEMMA 3.7. Let f € TP(x) N L*(RY) for some p> 1 and let q satisfy
p < < +o0. Then fe Tgp/q(xo).

Proof. By assumptionLlf fgllLee) < Cretd/p whereB, denotes the ball
B(xo,r). Letw = ¢, so that O< w < 1; sincef is bounded, by interpolation,

If - fB,nLq(B,) < @) = Fg E0(g)-
Therefore, if8 = ap/q, then||f - fBr”Lq(Br) < Crlo+d/po — cpp+d/a,

COROLLARY 3.8. Let f € BV(RY) n L®(RY), and g> d*. The g-spectrum
of f satisfies

dd(H) < d%H +(d-1).

Remark: Of course this inequality is relevant only wheh< %

Proof. We come back to the proof of Theorem 3.6. We proved that outside
the setAs, f belongs ton*d 1(Xo)- It follows from the previous lemma thédt
also belongs td;}(xo) fory = (6 - &) & = 24" -4 SinceA, is of dimension

at mosts, the corollary follows Just as the end of Theorem 3.6.

4. Topological and geometric properties of the essential boundary

4.1. ESSENTIAL BOUNDARY AND MODIFIED DOMAIN

The geometric quantities introduced in Section 2 do not changkisf re-
placed by another s&?, as long as they fier by a set of measure 0. This

is clear when we consider the functior, llviewed as a_loc-function), the
measure #(x)dxor the indicesyy, as, Bw andBs. Therefore, the only points

of the boundary that are pertinent to analyse from a “measure” point of view
are those for whickr > 0, Vol(B(xo, r) N Q) > 0 andVol(B(xo, r) N Q) > 0.

This motivates the following definition.



16 Y. HEURTEAUX AND S. JAFFARD

DEFINITION 4.1. (Essential boundaryet Q be a Borel subset @Y. De-
note bydQesSthe set of pointsge RY such that for every & 0,

Vol(B(xo,r) N Q) >0 and Vol[B(x,r)NnQ% >0.
The sebQ®3%is called the essential boundary Qf

It is clear thatdQ®ss c 9Q. More precisely, we have the following charac-
terization of 9QesS recall that, if A and B are subsets dk9, then AAB =
(AU B)\ (AN B).

PROPOSITION 4.2. Let x € RY. Then, xe dQ®sSif and only if x is a
boundary point of every Borel s& such that VAQAQ') =0

Remark: In particular,dQ€sSis a closed subset &¢.

Proof of Proposition 4.2Let

A= ﬂ o’ .
Vol(QAQ)=0

It is clear thatdQ®sS c A. Conversly, suppose for example that there exists
r > 0 such thatvol(Q N B(x,r)) = 0. Define®)’ by Q" = Q\ B(x,r). Then
VOI(QAQ') =0 andx ¢ 9O .

The essential boundary can also be defined as the support of the distribu-
tion grad(1h). According to Proposition 4.2, it is natural to ask if there exists
a modified Borel se®© which is minimal in the sense theoI(QAQ) = 0 and
HOESS= HQ).

PROPOSITION 4.3. (Modified domairbet @ be a Borel set irRY. There
exists a Borel se® such that

Vol(QAQ) =0 and 0Q%5S= Q).

In particular dQ c <Y for everyQY’ such that VQAQ') = 0. The Borel set
Q is called the modified domain ©X.

Remark: This notion is implicit in many books of geometric measure theory,
see for instance (Giusti, 1984) page 42. We can suppose in the following that
Q = Q anddQess= HQ.

Proof of Proposition 4.3Let (Bn)nen be a sequence of open balls which is a
base for the usual topology &f. Let

I"={neN; VolB,nQ)=0}, and I*={neN; VolB,NnQ°% =0} .



MULTIFRACTAL ANALYSIS OF IMAGES 17

Observe thatip € I~ andqg € I, then,B, N Bq = 0. Define

o\ | Bn}U(U Bn] .

nel- nel*

Q=

It is clear thatvol(QAQ) = 0. There remains to prove tha® c 9Q°esS Let
X € Q) andr > 0. Letn be such thak € B, c B(x,r). Sincex is in the
closure ofQ, B,N Q # 0. So,n ¢ 1~ andVol(B, N Q) > 0. In the same way,
xis in the closure of)® andB, N Q° # 0; thusn ¢ I* andVol(B, N Q°) > 0.
Finally Vol(B(x,r) N Q) > 0 andVol(B(x,r) N Q) > 0 so thatx € 9Q°S We
can also define thessential interioand essential closuref Q by

o €SS

Q :{xeRd; dr >0; VoI(B(x,r)nQ°)=O}

and ess
-|

Q xeR?; Vr >0, VoI(B(x, 1) N Q) > 0} .

They are respectively open and closed subsef @nd satisfy

o €SS

HOESS— 5955\ 0

4.2. BALANCED POINTS

We now explore the topological properties of the sets of points of the essential
boundaryQ®sSsfor which eithels,, or 85 vanishes. We begin with a definition
which identifies natural subsets of the sets of points with accessibility O.

DEFINITION 4.4. LetQ c RY be a Borel set andgxe 9QesS

1. A point % is strongly balanced if there exists< n < 1/2and rp > 0

such that
Vol(B(xp, 1) N Q) <1

<
"= Voo )
2. A point x is weakly balanced if there exidis< n < 1/2 such that
n < Vol(B(Xp, r) N Q) <1-
Vol(B(xo,r))
We denote by BQ) (resp.WB(Q)) the set of strongly (resp. weakly) bal-
anced points idQ°s* It is clear that
SHQ) C {xo0 € 9Q°°%; Bs(x0) =0} and WB(Q) < {Xo € IQ°*%; Bu(x0) = O} .

Recall that Baire’s theorem asserts thaE it a complete metric set, a count-
able intersection of open dense sets is dense. A set which contains such an
intersection is calledyeneric

Yr < ro,

Yro >0, dr <rp;
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PROPOSITION 4.5.Let Q be a Borel subset d&9 and 9Q°sSits essential
boundary. The set W(R) of weakly balanced points is generica®®ss (for

the induced topology). As a consequence, the set of pajresaQ®sSsuch
thatBw(xo) = 0 is generic indQess

PROPOSITION 4.6.Let Q be a Borel subset gt¢ and 9Q°sSits essential
boundary. The set S8) of strongly balanced points is densedf®sS As
a consequence, the set of poingsexdQ®°°such thafBs(Xp) = 0 is dense in
0Q°sS

Remark: It would be interesting to determine¥BQ) is generic inDQcss

Proof of Proposition 4.5We first remark that Baire's theorem can be applied
in 9QesS (because it is a closed subsetRs). Let xg € 9Q%Sande > 0.
Lebesgue’s dierentiability theorem, applied to the Borel functién= 1l
asserts that, for almost evexye RY,

Vol(B(x,r) N Q)
Vol(B(x, 1))

— f(x) when r— 0.

Recall that
Vol({x € B(xo,&/2); f(X) = 1}) > 0 andVol({x € B(x,/2); f(x) =0}) > 0.
We can then fingo, y1 € B(xo, £/2) such that

Vol(B(yo,r) N Q) S 3 and Vol(B(y1,r) N Q) < 1
Vol(B(yo,r)) ~— 4 Vol(B(ys.r)) ~— 4

whenr is small enough. Ley; = ty; + (1 — t)yo. The intermediate value
theorem applied to the continuous function
Vol(B(y;, r) N Q)

Vol(B(y:,r))

allows us to construct a poing € B(xo, £/2) (which is equal to; for some
value oft) such that

t—

Vol(B(x1,r)nQ) 1

Vol(B(xy,r) — 2°
Such an open balB(xy,r) will be called a “perfectly balanced” ball. The
connexity of the balB(xy, r) implies that it intersectdQ®ss (remember that
9Qesis the topological boundary of the modified dom&insee Proposition
4.3). LetOp be the union of all the open balls of radius< 1/n that are
“perfectly balanced”. We just have seen ti@t N 0Q°%is an open dense
subset 0DQ®%S SoM,-1 On N INESSis a countable intersection of open dense
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subsets of the essential bound@fy®sS Moreover, ifX € (\ns1 On N 9Q°SS
we can find a sequence of points € RY and a sequence of positive real
numberg,, < 1/nsuch that for every > 1

X € B(Xn,rn) and Vol(B(Xy,rn) N Q) = %Vol(B(xn, rn)) .

We then have
27Dy ol(B(x, 2rp)) < VOI(B(x, 2rn) N Q) < (1 - 274Dy ol(B(x, 2ry)),

which proves thak € WB(Q). e

Proof of Proposition 4.6 We develop the same idea as in Proposition 4.5. We
use the nornii ||.. instead of the Euclidian norm ik® and we will denote by
B.(X, r) the “balls” related to this norm (which are cubes!). gte Q¢S
ande > 0. Using the same argument as in Proposition 4.5, we carxfird

B (X0, £/2) andr < g/2 such that

Vol(Bo(x1,N) N Q) _ 1
VoIBuo(x,r) 2

The closed cubé.,(x1,r) can be divided into % closed cubes of radius
r/2 whose interiors do not overlap. Suppose that none of them is “perfectly
balanced”. We can then find two poirgs z; such that

Buo(20,1/2) C Boo(X1,1),  VOI(Bw(20,1/2) N Q) > %VOKEOO(ZO, r/2))
Boo(z1,1/2) € Boo(X1,1),  VOI(Bwo(z1,1/2) N Q) < %Vol(Ew(zl, r/2)).

Using once again the intermediate value theorem, we can construct a point
X2 (which is a barycenter af andz;) such thaiB. (X2, r/2) ¢ Bw(X1, 1) and
such that the baB.,(x2, r/2) is “perfectly balanced”. lterating this construc-
tion we obtain a sequence of “perfectly balanced” cubebx,, r2-("1) such
that

Boo(Xn+1, 127" C Boo (X, r2~(1)y |

Let X» = limp00 Xn @nd O< p < r. Let us denote by the integer such that

2" <« L <y
7 S

We observe that

B (X, 0) D B (Xoo,p/ \/a) 5 Buo (X0, 2™ D Boo (sz, r2—(n+1)) .
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In other words, the balB (X, p) contains a “perfectly balanced” cube with
length at leasp/2 vd. We deduce that

d
VOI(B(Xew, p) N Q) = %(2’;\/&)

d El
VOI(B(Xeo, p) N Q°) > %(2’;«/6)

(15) asserts that,, € SHQ). Moreover,||Xp — X«lle < € and the proof is
finished.e

(15)

4.3. THE FRACTAL DIMENSION OF THE SET OF BALANCED POINTS

We first consider the dimension of the set of points of accessibility 0.

THEOREM 4.7. LetQ be a Borel subset @ such that¥Q®sS+ 0. Then
dimp (WBQ)) >d-1.

Remark: In particular, dinp (0Q°%9 > d - 1.

Let us begin with a lemma which is a slight modification of a well known
result (see (Falconer, 1990) or (Heurteaux, 2003)).

LEMMA 4.8. LetG be a nonempty subsefiSfwhich satisfies Baire’s prop-
erty (for the induced topology) antl> 0. Suppose that for everyG, and
every r> 0, A(GnN B(x,r)) > 6. Thendimp (G) > 6 .

Proof. Suppose tha® c (Jna: En. Denote byE, the closure (irkY) of E.
Baire’s property implies that one of the related closed &ts) G has an
interior point inG. Thus there exisk € G, r > 0 andny € N such that
GNB(xr)c Ey, NG, so that

A(En,) = A(Eny) = A(En, NG) > A(GNB(X, 1)) > 6

and Lemma 4.8 follows.

Proof of Theorem 4.7.As in Section 4.2, |eD,, be the union of all “perfectly
balanced” open cubes of radius< 1/n and letG = (51 On N 9QSS G

is a densggs of the Baire spacéQ®ss so that it satisfies Baire’s property.
Moreover,G ¢ WH). According to Lemma 4.8, it is $licient to prove
that for everyx € G and everyr > 0, A(GN B(x,r)) > d- 1. Letx €
G andr > 0. We can findy € RY andp > 0 such that the cubB(y,p)

is “perfectly balanced” an& € B.(Y,p) € B(Xr). Let us split the cube
Bwo(Y, p) into 291 cubes of length 2+1p which are calledC;. We want to
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estimate the numbe; of cubesC; that intersecG. For each cub€;, let
w(C)) = Vol(Ci n Q)/Vol(C;). The mean ofu(C)) is 1/2. So, at least /B
of the w(C;) are greater than/4 and 33" of the w(C;) are lower than B4.
Now, there are two possibilities: Eithey@" of the cube<C; are such that
1/4 < w(C;) < 3/4; all those cubes interse@t(see the proof of Proposition
4.5 and 4.6) ant\j > 241/6. Else, there are at leastét" of the cubes such
thatw(C;) < 1/4 and 76" of the cubes such thai(C;) > 3/4. LetA be the
union of all the closed cubes such thatw(C;) < 1/2. Then

%Vol(Bm(y,p)) < Vol(A) < gVoI(Bm(y,p)) .

Isoperimetric inequalities (see for example (Ros, 2005)) ensure that the “sur-
face” of the boundary oA is at leastCp%-1. In particular, there exist at least
C(p)21@-D couples of cubesq, C’) such thalC N C’ # 0, w(C) < 1/2 and
w(C’) > 1/2. It follows thatC N G # 0 or C’' N G # 0 (an intermediate
cube is “perfectly balanced”). It follows th&t; > C21@-D. In either case,

Nj > C2/@-D So,AGNB(x,r)>d-1.e

5. Multifractal properties of the essential boundary

5.1. CONSTRUCTION OF THE SCALING FUNCTION

We will construct a multifractal formalism based on the dyadic grid whose
purpose is to derive the Hausdofor packing) dimensions of the level sets
of the functionsa,, andas. Recall thatF, is the set of dyadic (semi-open)
cubes of scal@; denote byi,(X) the unique cube i, that contains. The
following proposition is a simple consequence of the inclusiBps2™") c
3n(X) © B(x, 3Vd2™).

PROPOSITION 5.1.LetQ be a Borel subset @9 and xe dQ€SS Then

.. logVol (315(x) N Q) o logVol(31,(x) N Q)
aw(X)+d = IlnrlLlrgo]c “nlog 2 , as(X)+d = "n”lfiip “nlog 2 .

Proposition 5.1 suggests to introduce a scaling function as follows lbet
a Borel set such th@Q®ssis bounded and not empty; let

S(g,n) = Z (VolB1Nn Q) where F* ={1eFn: 1N IQS% 0},
/IETn*

and

7(g) = limsup

msup o 10g(S(a.1) (16)
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The functiont is decreasing and convex. The standard justification of the
multifractal formalism runs as follows: First, the contributior8{m, n) of the

set of points where the (weak or strong) accessibility exponent takes a given
valuea is estimated. If the dimension of this seti@), then there are about
2d@n dyadic cubes irF,* which cover this set; and such a cube satisfies
Vol(31 N Q) ~ 2=*". Therefore the order of magnitude of the contribution
we look for is 2(@a-d@)n Whenn — +c0, the preponderent contribution is
clearly obtained for the value afthat minimizes the exponeat]—d(«); thus

7(q) = inf,(aq-d(@)). If d(@) is a concave function, then this formula can be
inverted andl(«) is recovered fromr(q) by an inverse Legendre transform:

d(a) = inf(ag + (@)

The multifractal formalism holds if, indeed, this relationship between the
scaling function and the spectrum of singularties holds. We give in Section
5.3 some results in this direction.

Remark 1: The factor 3 in the definition db(q, n) is not always used in the
derivation of the multifractal formalism for measures; however, it improves
its range of validity, as shown by R. Riedi (Riedi, 1995). The novelty in our
derivation is the restriction of the sum to the cubesich than N OQESS £ 0;

this allows to eliminate all the points m and inRY \ [

Remark 2: In (Testud, 2006), Testud already introduced such a “restricted”
scaling function. In the context of his paper, a strange Cantdf getrturbs

the multifractal analysis of the measure. Multifractal formalism breaks down
at different levels. Testud introduces the scaling functigim which the sum

is restricted to the dyadic intervals that meet the CantoKsatd proves that

for all the “bad exponents”, the dimension of the level set is given by the
Legendre transformy, .

5.2. PROPERTIES OF THE SCALING FUNCTION
THEOREM 5.2. LetQ be a Borel subset &% such thahQ€SSis nonempty
and bounded. Defingq) as in(16). The following properties hold.

1. 7(0) = A(0Q®) andVq > 0, 7(Q) < A(9Q°3) —dq.

2.¥q=0, 7(g)>d-1-dg.

3.YgeR, dimp(SBHQ)) < 7(qg)+dqg.

4.¥qeR, dimy(WBLQ)) < 7(g)+dg.

Proof of Theorem 5.2.
1. If 1N 9QSss # 0, then,Vol(31 N Q) > 0 and(Vol(31 N Q))° = 1, thus
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7(0) = A(0Q2°%9. More precisely, iig > 0, then
D (Vol(31n Q)7 < Card (F,")(3.27")%;
A€Fn"

it follows thatz(g) < A(0Q°%) — dq.

2. If nis large enough, using a similar argument as in Theorem 4.7, we can
find at leastc2@-1" cubes inF* which are “quite balanced”. These cubes
satisfyVol(31 N Q) ~ 279" and the inequality follows.

3. ltis easy to see thap € S BQ) if and only if there exists & n < 1/2 and
no such that

Vol(34
vn>ny, n< Ol N 2)
(3.2-1)d

Let Uy, , denote the set of points that satisfy (17). kek dimp (S BQ)).
We can findp, ng € N* such that

1-7. (17)

A(Uny, 1/p) = dimp (Un, 1/p) > @ .

If Nk is the number of cubes e Fi we need to covedp, 1/p, then,Ny > 25
infinitely often. Supposeg > 0 (the proof is similar ifg < 0). We get

L okod) o 3 kemd
Z (Vol(3B1n Q))d > Nk(—(3.2‘ ) ) > —2 (a—dg)
AT p Y

infinitely often. We conclude that(g) > a — dq.

4. Note thatxp € WB(Q) if and only if there exists & n < 1/2 such that

Vol(31n(x0) N )
VYno, n>ng; 75< <
0 0. T (3210

Let V, denote the set of points that satisfy (18). lpe€ {2,3,---}, np € N*
and suppose that> 0 (the proof is similar i < 0). We can coveYy,p with
cubes of scal@ > ng such thatvol(31 N Q) > %(3.2‘”)". Let R be such a
covering and”’ > 7(q). We have

> diam @79 < € )" (Vol(31n ©)° diam @)

AeR AeR

<C);

n=np

1-7. (18)

Z (Vol(31 N Q))d| 2"

AEFR"




24 Y. HEURTEAUX AND S. JAFFARD

Moreover, ift’ > 7 > 7(q) andng suficiently large, then

Z (Vol(31n Q)% < 2" .
AeFn*

It follows that

Z diam a)‘r'+dq <C Z 2n(‘r”—‘r’) < c

AR n>no S l-2r
We conclude that dim(Vy/p) < 7" + dgand dimy (WB(Q)) < 7 + dq.

5.3.  THE MULTIFRACTAL FORMALISM ASSOCIATED WITHaQ®s®

The proofs of points 3 and 4 in Theorem 5.2 allow to obtain estimates of the
level sets of accessibility index.

THEOREM 5.3. LetQ be a Borel subset @& such thatQ®sSis nonempty
and bounded. Defing(q) as in(16). If « > 0, let

EY = {x€ dQ®%%; aw(X) <a} and E ={xe€dQ°®; ag(X) <a} .
For every g> O,
dimg (EY) < (d+a)g+7(q) and dimp(E3) < (d+ a)q+ 7(q).
In particular, if @ + d < —77(0), then
dimy (EY) < t*(@+d) and dimp(ES) < v*(a +d).

The proof uses the same ideas as in Theorem 5.2 and requires to introduce the
set of pointsx € 9Q€SSsuch thaw/ ol (31,(X) N Q) > 2-"@+¢+) infinitely often

(resp. for n large enough). In the same way, we can also prove the following
twin result.

THEOREM 5.4. LetQ be a Borel subset @&® such thaQeSSis nonempty
and bounded. Defing(q) as in(16). If « > 0, let

FV={xedQ®® aw(X) > a} and F ={xedQ®®; ag(X) >0} .
For every g< O,
dimp (FY) < (d+a)g+7(q) and dimy(F]) < (d+ a)q+7(q).
In particular, if @ + d > -7/, (0),

dimp (FY) < 7"(@+d) and dimy (FS) < t*(a + d).
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Remark 1: The setE; (resp.FY) is quite similar to the set of strong-
accessible points (resp. weakaccessible points).

Remark 2: The results in Theorem 5.3 and 5.4 are standard multifractal
inequalities adapted to the context of boundaries (see (Brown et al., 1992)).
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