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Abstract. Natural images can be modelled as patchworks of homogeneous textures with
rough contours. The following stages play a key role in their analysis:

- Separation of each component
- Characterization of the corresponding textures
- Determination of the geometric properties of their contours.

Multifractal analysis proposes to classify functions by using as relevant parameters the di-
mensions of their sets of singularities. This framework can be used as a classification tool in
the last two steps enumerated above. Several variants of multifractal analysis were introduced,
depending on the notion of singularity which is used. We describe the variants based on Hölder
andLp regularity, and we apply these notions to the study of functions of bounded variation
(indeed the BV setting is a standard functional assumption for modelling images, which is
currently used in the first step for instance). We also develop a multifractal analysis adapted
to contours, where the regularity exponent associated with points of the boundary is based on
an accessibility condition. Its purpose is to supply classification tools for domains with fractal
boundaries.
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1. Mathematical modelling of natural images

In order to develop powerful analysis and synthesis techniques in image pro-
cessing, a prerequisite is to split the image into simpler components, and to
develop some classification procedures for these components. Consider the
example of a natural landscape: It consists of a superposition of different
pieces which present some homogeneity. Perhaps there will be a tree in the
foreground, mountains in the background and clouds at the top of the picture.
An efficient analysis procedure should first be able to separate these compo-
nents which will display completely unrelated features and analyse each of
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them separately, since they will individually present some homogeneity. Con-
sidering an image as a superposition of overlapping components is referred to
as the “dead-leaves” model, introduced by Matheron. See (Matheron, 1975)
and (Bordenave et al., 2006) for recent developments). Each piece appears as
a relatively homogeneous part which is “cut” along a certain shapeΩ. The
homogeneous pieces are the “textures” and their modelling can be performed
by interpreting them as the restriction on the “shape”Ω of random fields of
R2 with particular statistical properties (stationarity,...). If a statistical model
depending on a few parameters is picked, then one needs to devise a robust
statistical test in order to estimate the values of these parameters. Afterwards,
the test can be used as a classification tool for these textures. Furthermore,
once the relevant values of the parameters have been identified, the model can
be used for simulations. The procedure is now standard to classify and gener-
ate computer simulations of clouds for instance (Arneodo et al., 2002; Naud
et al., 1997).

Another problem is the modelling of the shape ofΩ; indeed natural scenes
often do not present shapes with smooth edges (it is typically the case for the
examples of trees, mountains or clouds that we mentioned) and the challenge
here is to develop classification tools for domains with non-smooth (usually
“fractal”) boundaries. Until recently, the only mathematical tool available was
the box-dimension of the boundary (see Definition 3.1) which is an important
parameter but nevertheless very insufficient for classification (many shapes
share the same box dimension for their boundary, but clearly display very
different features).

Let us come back to the separation of the image into “simpler” com-
ponents that present some homogeneity. It can be done using a “global”
approach: The image is initially stored as grey-levelsf (x, y) and is approx-
imated by a simple “cartoon”u(x, y). What is meant by “simple” is that
textures will be replaced by smooth pieces and rough boundaries by piecewise
smooth curves1. The building of a mathematical model requires summarizing
these qualitative assumptions by choosing an appropriate function space set-
ting. In practice, the spaceBV (for “bounded variation”) is usually chosen. A
function f belongs toBV if its gradient (in the distribution sense) is a bounded
measure (the nameBV refers to the one-dimensional case where a function
f belongs toBV if the sums

∑
i | f (xi+1) − f (xi)| are uniformly bounded, no

matter how we chose the finite increasing sequencexi). Indeed, the spaceBV
presents several of the required features : It allows only relatively smooth tex-
tures but, on the other hand, it allows for sharp discontinuities along smooth
lines (or hypersurfaces, in dimension> 2). It is now known that natural

1 This kind of simplification was anticipated by Hergé in his famous “Tintin” series and by
his followers of the Belgian “la ligne claire” school.
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images do not belong toBV (Gousseau and Morel, 2001), but this does
not preventBV being used as a model for the “sketch” of an image:f is
decomposed as a sumu + v whereu ∈ BV andv is an approximation error
(for instance it should have a smallL2 norm) and one uses a minimization
algorithm in order to findu. In such approaches, we may expect that the dis-
continuities of the “cartoon”u will yield a first approximation of the splitting
we were looking for. Such decompositions are referred to as “u+ v” models
and lead to minimization algorithms which are currently used; they were
initiated by L. Rudin and S. Osher, and recent mathematical developments
were performed by Y. Meyer, see (Meyer, 2001) and references therein. Once
this splitting has been performed, one can consider the elementary compo-
nents of the image (i.e. shapes that enclose homogenous textures) and try to
understand their geometric properties in order to obtain classification tools; at
this point, no a priori assumption on the function is required; one tries to char-
acterize the properties of the textures and of the boundaries by a collection
of relevant mathematical parameters; these parameters should be effectively
computable on real images in order to be used as classification parameters
and hence for model selection. Multifractal analysis is used in this context:
It proposes different pointwise regularity criteria as classification tools and it
relates them to “global” quantities that are actually computable.

The different pointwise quantities (regularity exponents) which are used
in multifractal analysis are exposed in Section 2, where we also recall their
relationships.

In Section 3, we deal with “global” aspects. The tools (fractional dimen-
sions) used in order to measure the sizes of sets with a given pointwise
regularity exponent are defined (they are referred to as spectra of singu-
larities). We also draw a bridge between these local analysis tools and the
global segmentation approach described above. The implications of theBV
assumption on the multifractal analysis of a function are derived. The results
of this section supply new tools in order to determine if particular images (or
homogenous parts of images) belong toBV.

In Sections 4 and 5 we concentrate on the analysis of domains with fractal
boundaries. Section 4 deals with general results concerning the pointwise
exponents associated with these domains and Section 5 deals with their multi-
fractal analysis. Apart from image processing, there are other motivations for
the multifractal analysis of fractal boundaries, e.g. in physics and chemistry:
turbulent mixtures, aggregation processes, rough surfaces, see (Jaffard and
Melot, 2005) and references therein.
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2. Pointwise smoothness

Each variant of multifractal analysis is based on a definition of pointwise
smoothness. In this section, we introduce the different definitions used, ex-
plain their motivations and their relationships.

2.1. POINTWISE EXPONENTS FOR FUNCTIONS AND MEASURES

The most simple notion of smothness of a function is supplied byCk dif-
ferentiability. Recall that a bounded functionf belongs toC1(Rd) if it has
everywhere partial derivatives∂ f

∂xi
which are continuous and bounded;Ck

differentiability fork ≥ 2 is defined by recursion:f belongs toCk(Rd) if it
belongs toC1(Rd) and each of its partial derivatives∂ f

∂xi
belongs toCk−1(Rd).

Thus a definition is supplied foruniform smoothness when the regularity
exponentk is an integer. Taylor’s formula follows from the definition ofCk

differentiability and states that, for anyx0 ∈ R
d, there existsC > 0, δ > 0 and

a polynomialPx0 of degree less thank such that

if |x− x0| ≤ δ, then | f (x) − Px0(x)| ≤ C|x− x0|
k.

This consequence ofCk differentiability is just in the right form to yield a
definition of pointwisesmoothness which also makes sense forfractional
orders of smoothness; following a usual process in mathematics, this result
was turned into a definition.

DEFINITION 2.1. Letα ≥ 0, and x0 ∈ Rd; a function f : Rd → R is Cα(x0)
if there exists C> 0, δ > 0 and a polynomial Px0 of degree less thanα such
that

if |x− x0| ≤ δ, then | f (x) − Px0(x)| ≤ C|x− x0|
α. (1)

The Hölder exponent of f at x0 is hf (x0) = sup{α : f is Cα(x0)}.

Remarks: The polynomialPx0 in (1) is unique and, ifα > 0, the constant
term of Px0 is f (x0); P is called the Taylor expansion off at x0 of orderα;
(1) implies thatf is bounded in a neighbourhood ofx0; therefore, the Ḧolder
exponent is defined only for locally bounded functions; it describes the local
regularity variations off . Some functions have a constant Hölder exponent:
They display a “very regular irregularity”. A typical example is the Brownian
motionB(t) which satisfies almost surely:∀x, hB(x) = 1/2.

Hölder regularity is the most widely used notion of pointwise regularity
for functions. However, it suffers several drawbacks; one of them appeared at
the very beginning of the introduction of multifractal analysis, in the mid-
eighties; indeed, it was introduced as a tool to study the velocity of tur-
bulent fluids, which is not necessarily a locally bounded function; and, as
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mentioned above, Ḧolder regularity can only be applied to locally bounded
functions. Several mathematical drawbacks were already discovered at the
beginning of the sixties by Calderón and Zygmund (Cald́eron and Zygmund,
1961). Another one which appeared recently is that the Hölder exponent of
a function which has discontinuities cannot be deduced from the size of its
wavelet coefficients. This is a very serious drawback for image analysis since
images always contain objects partly hidden behind each other (this is re-
ferred to as the “occlusion phenomenon”), and therefore necessarily display
discontinuities. IfB is a ball, let

‖ f ‖B,∞= sup
x∈B
| f (x)|, and, if 1≤ p < ∞, ‖ f ‖B,p=

(
1

Vol(B)

∫
B
| f (x)|pdx

)1/p

;

finally let Br = {x : |x − x0| ≤ r} (not mentioningx0 in the notations won’t
introduce ambiguities afterwards). A clue to understand how the definition
of pointwise Ḧolder regularity can be weakened (and therefore extended to
a wider setting) is to notice that (1) can be rewritten‖ f − Px0 ‖Br ,∞≤ Crα.
Therefore, one obtains a weaker criterion by substituting in this definition the
local L∞ norm by a localLp norm. The following definition was introduced
by Caldeŕon and Zygmund in 1961 (Caldéron and Zygmund, 1961).

DEFINITION 2.2. Let p∈ [1,+∞); a function f : Rd −→ R in Lp
loc belongs

to Tp
α (x0) if ∃R,C > 0 and a polynomial Px0 of degree less thanα such that

∀r ≤ R ‖ f − Px0 ‖Br ,p≤ Crα. (2)

The p-exponent of f at x0 is hp
f (x0) = sup{α : f ∈ Tp

α (x0)}.

It follows from the previous remarks that the Hölder exponenthf (x0) coin-
cides withh∞f (x0). Note that (2) can be rewritten

∀r ≤ R,
∫

Br

| f (x) − Px0(x)|pdx≤ Crαp+d. (3)

Thesep-smoothness conditions have several advantages when compared with
the usual Ḧolder regularity conditions: They are defined as soon asf belongs
locally to Lp and thep-exponent can be characterized by conditions bearing
on the moduli of the wavelet coefficients of f (Jaffard, 2006). Note that the
Tp
α (x0) condition gets weaker asp goes down, and therefore, for a given

x0, p 7→ hp
f (x0) is a decreasing function. Let us now focus on the weakest

possible case, i.e. whenp = 1. First, recall that, iff is a locally integrable
function, thenx0 is a Lebesgue pointof f if

1
Vol(Br )

∫
Br

( f (x) − f (x0))dx−→ 0 when r −→ 0. (4)
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Therefore, one can see theT1
α(x0) smoothness criterium as a way to quantify

how fast convergence takes place in (4) whenx0 is a Lebesgue point off . The
L1 norm of f −Px0 expresses anaveragesmoothness off : How close (in the
mean) aref and a polynomial. Sometimes one rather wants to determine how
large f is in the neighbourhood ofx0; then the relevant quantity is the rate of
decay of the localL1 norms

∫
B(x0,r)

| f (x)|dx whenr → 0. This quantity can

also be considered for a nonnegative measureµ instead of anL1 function. In
that case, one considers

∫
B(x0,r)

dµ = µ(B(x0, r)). This leads us to the following
pointwise size exponent.

DEFINITION 2.3. Let p ∈ [1,+∞); a nonnegative measureµ belongs to
Sα(x0) if there exist positive constants R and C such that

∀r ≤ R,
∫

Br

dµ ≤ Crα. (5)

The size-exponent ofµ at x0 is

sµ(x0) = sup{α : µ ∈ Sα(x0)} = lim inf
r→0

logµ(B(x0, r))
log r

.

If f ∈ L1, then sf (x0) is the size exponent of the measure dµ = | f (x)|dx.

If f ∈ L1 and ifPx0 in (3) vanishes, then the definitions of the 1-exponent and
the size exponent off coincide except for the normalization factorrd in (3)
which has been dropped in (5); thus, in this case,sf (x0) = h1

f (x0) + d. This
discrepancy is due to historical reasons: Pointwise exponents for measures
and for functions were introduced independently. It is however justified by
the following remark which is a consequence of two facts:µ((x, y]) = |F(y)−
F(x)|, and the constant term ofPx0 is F(x0).

Remark: Let µ be a non-negative measure onR such thatµ(R) < +∞ and let
F be its repartition function defined byF(x) = µ((−∞, x]); if the polynomial
Px0 in (3) is constant, thensµ(x0) = h1

F(x0).
One does not subtract a polynomial in the definition of the pointwise ex-

ponent of a measure because one is usually interested in the size of a measure
near a point, not its smoothness. Consider the very important case where
µ is the invariant measure of a dynamical system; then the size exponent
expresses how often the dynamical system comes back close tox0, whereas
a smoothness index has no direct interpretation in terms of the underlying
dynamical system.
We will need to useTp

α (x0) smoothness expressed in a slightly different form:
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PROPOSITION 2.4.Let f ∈ Lp
loc, andα ∈ (0,1]; let f r =

1
Vol(Br )

∫
Br

f (x)dx.
Then

f ∈ Tp
α (x0) ⇐⇒

(
1

Vol(Br )

∫
Br

∣∣∣∣ f (x) − f r

∣∣∣∣p dx

)1/p

≤ Crα. (6)

Proof. Suppose thatf ∈ Tp
α (x0) and letA be the constant polynomial which

appears in the definition ofTp
α ; then

f r − A =
1

Vol(Br )

∫
Br

( f (x) − A)dx ;

Hölder’s inequality yields that| f r − A| is bounded by

1
Vol(Br )

[∫
Br

| f (x) − A|pdx

]1/p

(Vol(Br ))
1/q ≤ C(Vol(Br ))

1/q−1+1/prα = Crα .

Thus, f r = A+O(rα). As a consequence, if we replaceA by f r in the quantity
to be estimated in the definition ofTp

α , the error isO(rα).
Conversly, suppose that (6) is true. Letr, r ′ be such that 0< r ≤ r ′. We

have

‖ f − f r‖Lp(Br ) ≤ Crα+d/p and ‖ f − f r ′‖Lp(Br′ ) ≤ C(r ′)α+d/p .

Sincer ≤ r ′, ‖ f − f r ′‖Lp(Br ) ≤ C(r ′)α+d/p; therefore

‖ f r ′ − f r‖Lp(Br ) ≤ C(r ′)α+d/p ,

so that| f r ′ − f r | ≤ C(r ′)α . It follows that f r converges to a limitf 0 whenr
goes to 0. Moreoverf r = f 0 +O(rα) and therefore one can takeA = f 0.

2.2. POINTWISE EXPONENTS FOR BOUNDARY POINTS OF DOMAINS

We will show how to draw distinctions between points of the boundary of a
domainΩ, by associating to each of them an exponent, which may change
from point to point along the boundary. This will allow us afterwards to
perform a multifractal analysisof the boundary, i.e. to use as a discrimi-
nating parameter between different types of boundaries the whole collection
of dimensions of the corresponding sets where this exponent takes a given
value. Let us check if the exponents previously introduced can be used; the
function naturally associated with a domainΩ is its characteristic function
11Ω(x) which takes the value 1 onΩ and 0 outsideΩ. The Ḧolder exponent of
11Ω cannot play the role we expect, since it only takes two values:+∞ outside
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∂Ω and 0 on∂Ω. Let us now consider thep-exponents and the size exponent.
We start by a toy-example: The domainΩα ⊂ R2 defined by

(x, y) ∈ Ωα if and only if |y| ≤ |x|α.

At the point (0,0) one immediately checks that, ifα ≥ 1, the p-exponent
takes the value (α − 1)/p, and the size exponent takes the valueα + 1. On
the other hand, if 0< α < 1, the p exponent takes the value (1− α)/(αp)
but the size exponent is always equal to 2. This elementary computation
shows the following facts: Thep-exponent of a characteristic function can
take any nonnegative value, the size exponent can take any value larger than
2; the 1-exponent and the size exponent give different types of information.
The following proposition, whose proof is straightforward, gives a geometric
interpretation for the size exponent of 11Ω.

PROPOSITION 2.5.LetΩ be a domain ofRd and let x0 ∈ ∂Ω; 11Ω ∈ Sα(x0)
if and only if∃R> 0 and C> 0 such that∀r ≤ R Vol(Ω ∩ B(x0, r)) ≤ Crα.

The following definition encapsulates this geometric notion.

DEFINITION 2.6. A point x0 of the boundary ofΩ is weakα-accessible if
there exist C> 0 and r0 > 0 such that∀r ≤ r0,

Vol (Ω ∩ B(x0, r)) ≤ Crα+d. (7)

The supremum of all values ofα such that(7) holds is called theweak
accessibility exponent atx0. We denote it byαw(x0).

Thusαw(x0) is a non negative number and is nothing but the size exponent
of the measure 11Ω(x)dx shifted byd. The following proposition of (Jaffard
and Melot, 2005) shows that, for characteristic functions, all thep-exponents
yield the same information and therefore one can keep only the 1-exponent.

PROPOSITION 2.7.LetΩ be a domain ofRd and let x0 ∈ ∂Ω; then11Ω ∈
Tp
α (x0) if and only if either11Ω ∈ Sα/p(x0) or 11Ωc ∈ Sα/p(x0), whereΩc

denotes the complement ofΩ.

Following the same idea as above, one can also define abilateral ac-
cessibility exponent of a domain which is the geometric formulation of the
1-exponent of the function 11Ω, see (Jaffard and Melot, 2005).

DEFINITION 2.8. A point x0 of the boundary∂Ω is bilaterally weakα-
accessible if there exist C> 0 and r0 > 0 such that∀r ≤ r0,

min
[
Vol (Ω ∩ B(x0, r)) , Vol

(
Ωc ∩ B(x0, r)

)]
≤ Crα+d. (8)

The supremum of all values ofα such that(8) holds is called thebilateral
weak accessibility exponent atx0. We denote it byβw(x0).
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Remark 1: It follows immediately from the above definitions that the bi-
lateral exponentβw(x0) is the supremum of the unilateral exponentsαw(x0)
associated withΩ and its complementΩc. In practice, using unilateral or
bilateral exponents as classification tools in multifracal analysis will be ir-
relevant whenΩ andΩc have the same statistical properties. It is the case
when they are obtained by a procedure which makes them play the same
role (for instance if∂Ω is the edge of the fracture of a metallic plate). On
the other hand, unilateral exponents should yield different types of informa-
tion when the roles played byΩ and its complement are very dissymetric
(electrodeposition aggregates for instance).

Remark 2: If Ω ∈ BV, then, by definition grad(11Ω) is a measure, and
therefore one could also consider an additional exponent, which is the size
exponent of|grad(11Ω)|. We won’t follow this idea because, in applications,
one has no direct access to the measure grad(11Ω), and we want to base our
analysis only on information directly available fromΩ.

We will also use the following alternative accessibility exponents.

DEFINITION 2.9. A point x0 of the boundary ofΩ is strongα-accessible if
there exist C> 0 and r0 > 0 such that∀r ≤ r0,

Vol (Ω ∩ B(x0, r)) ≥ Crα+d. (9)

The infimum of all values ofα such that(9) holds is called thestrong acces-
sibility exponent atx0. We denote it byαs(x0). A point x0 of the boundary of
Ω is bilaterally strongα-accessible if there exist C> 0 and r0 > 0 such that
∀r ≤ r0,

min
[
Vol (Ω ∩ B(x0, r)) , Vol

(
Ωc ∩ B(x0, r)

)]
≥ Crα+d. (10)

The infimum of all values ofα such that(10) holds is called thebilateral
strong accessibility exponent atx0. We denote it byβs(x0).

The following result yields alternative definitions of these exponents.

PROPOSITION 2.10.Let x∈ ∂Ω; then

αw(x)+d = lim inf
r→0

logVol (Ω ∩ B(x, r))
log r

, αs(x)+d = lim sup
r→0

logVol (Ω ∩ B(x, r))
log r

.

Similar relations hold for the indicesβw(x) andβs(x).

Other exponents associated with boundaries have been introduced; they were
based on the notion ofdensity, which we now recall.



10 Y. HEURTEAUX AND S. JAFFARD

DEFINITION 2.11. Let x0 ∈ Ω; the density ofΩ at x0 is

D(Ω, x0) = lim
r→0

Vol(B(x0, r) ∩Ω)
Vol(B(x0, r))

. (11)

This limit does not necessarily exist everywhere; thus, if one wants to obtain
an exponent which allows a classification of all points of∂Ω, the upper
density exponentD(Ω, x0) or the lower density exponent D(Ω, x0) should
rather be used; they are obtained by taking in (11) respectively a lim sup or
a lim inf. The set of points whereD(Ω, x0) differs from 0 and 1 is called the
measure theoretic boundary, see Chap. 5 of (Ziemer, 1989). This allows to
introduce topological notions which have a measure-theoretic content. The
measure theoretic interiorof Ω is the set of points satisfyingD(Ω, x0) = 1;
the measure theoretic exterioris the set of points satisfyingD(Ω, x0) = 0.
See Chap. 5 of (Ziemer, 1989) for more on these notions which bear some
similarities with the ones we will develop in Section 4.1. Note that points
with a positive weak-accessibility exponent all have a vanishing density, so
that density exponents are a way to draw a distinction between different points
of weak-accessibility 0. This refinement has been pushed even further when
Ω has a finite perimeter (i.e. when 11Ω ∈ BV). Points of density 1/2 can be
classified by considering points where the boundary is “close” to a hyper-
plane (see (Ziemer, 1989) for precise definitions); such points constitute the
“reduced boundary” introduced by de Giorgi. We will come back to these
classifications in Section 4.2.

3. Fractional dimensions, spectra and multifractal analysis

3.1. FRACTIONAL DIMENSIONS

In order to introduce global parameters which allow to describe the “fractal-
ity” of the boundary of a domain, we need to recall the notions of dimensions
that will be used. Their purpose is to supply a classification among sets of
vanishing Lebesgue measure inRd.

The simplest notion of dimension of a setE (and the only one that is
computable in practice) is the upper box-dimension. It can be obtained by
estimating the number of dyadic cubes that intersectE. Recall that adyadic
cubeof scalej is of the form

λ =

[
k1

2 j
,
k1 + 1

2 j

)
× . . . ×

[
kd

2 j
,
kd + 1

2 j

)
, where k = (k1, . . . kd) ∈ Zd;

F j denotes the set of dyadic cubes of scalej.
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DEFINITION 3.1. (Upper box-dimension)Let E be a bounded set inRd

and Nj(E) be the number of cubesλ ∈ F j that intersect E. The upper box-
dimension of the set E is defined by

∆(E) = lim sup
j→+∞

log(N j(E))

log(2j)
.

This notion of dimension presents two important drawbacks. The first one is
that it takes the same value for a set and its closure. For example, the upper
box-dimension of the setQ of rational numbers is equal to 1, but we would
expect the dimension of a countable set to vanish. The second one is that it is
not aσ-stable index, i.e. the dimension of a countable union of sets usually
differs from the supremum of the dimensions of the sets. In order to correct
these drawbacks, a very clever idea, introduced by C. Tricot (Tricot, 1982),
consists in “forcing” theσ-stability as follows:

DEFINITION 3.2. (Packing dimension)Let E⊂ Rd; the packing dimension
of E is

dimP (E) = inf

sup
i∈N

[∆(Ei)] ; E ⊂
⋃
i∈N

Ei

 ,
where the infimum is taken on all possible “splittings” of E into a countable
union.

The Hausdorff dimension is the most widely used by mathematicians.

DEFINITION 3.3. (Hausdorff dimension)Let E ⊂ Rd and α > 0. Let us
introduce the following quantities : Let n∈ N; if Λ = {λi} i∈N is a countable
collection of dyadic cubes of scales at least n which forms a covering of E,
then let

Hαn (E,Λ) =
∑
i∈N

diam (λi)
α, and Hαn (E) = inf

(
Hαn (E,Λ)

)
,

where the infimum is taken on all possible coverings of E by dyadic cubes of
scales at least n. Theα-dimensional Hausdorff measure of E is

Hα(E) = lim
n→+∞

Hαn (E).

The Hausdorff dimension of E is

dimH (E) = sup
(
α > 0 ; Hα(E) = +∞

)
= inf

(
α > 0 ; Hα(E) = 0

)
.

Remark 1. Hausdorff measures extend to fractional values ofd the notion
of d-dimensional Lebesgue measure, indeed,Hd is the Lebesgue measure in
Rd. The Hausdorff dimension is an increasingσ-stable index.
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Remark 2. The following inequalities are always true, see (Falconer, 1990).

0 ≤ dimH (E) ≤ dimP (E) ≤ ∆(E) ≤ d .

3.2. SPECTRA OF SINGULARITIES

In all situations described in Section 2, a “pointwise smoothness function” is
associated to a given signal (this may be for example the Hölder exponent, the
p-exponent or the size exponent). In the case where the signal is irregular, it is
of course impossible to describe this function point by point. That is why one
tries to obtain a statistical description, by determining only the dimensions
of the sets of points with a given exponent. This collection of dimensions,
indexed by the smoothness parameter is called thespectrum of singularities.
Actually, two kinds of spectra are used, depending on whether one picks the
Hausdorff or the packing dimension, see Theorems 5.3 and 5.4 for estimates
on such spectra. In the next section, we will estimate thep-spectrum of BV
functions. Thisp-spectrumdp

f (H) is the Hausdorff dimension of the set of
points whosep-exponent isH. If p = ∞, d∞f (H) is simply denoted bydf (H).
It denotes the Hausdorff dimensions of the sets of points where the Hölder
exponent isH, and is called the spectrum of singularities off .

3.3. MULTIFRACTAL ANALYSIS OF BV FUNCTIONS

We saw that the spaceBV is currently used in order to provide a simple
functional setting for “sketchy” images, i.e. images which consist of piece-
wise smooth pieces separated by lines of discontinuities which are piecewise
smooth. This approach is orthogonal to the multifractal point of view; indeed,
multifractal analysis makes no a priori assumption on the function considered
and, therefore, is relevant also in the analysis of non smooth textures and
irregular edges. In order to go beyond this remark, it is important to under-
stand the implications of theBV assumption on the multifractal analysis of
a function. They strongly depend on the number of variables off ; therefore,
though our main concern deals with functions defined onR2, considering
the general case of functions defined onRd will explain some phenomena
which, if dealt with only ford = 1 or 2, might appear as strange numerical
coincidences.

We start by recalling the alternative definitions of the spaceBV(Rd). Let
Ω be an open subset ofRd and f ∈ L1(Rd). By definition,∫
Ω

|D f | = sup

{∫
Ω

f div g, g = (g1, · · · ,gd) ∈ C1
0(Ω,Rd) and‖g‖∞ ≤ 1

}
,
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where divg =
∑d

i=1
∂gi
∂xi

.
This notation is justified as follows: An integration by parts shows that if

f ∈ C1(Rd),
∫
Ω
|D f | =

∫
Ω
|gradf |dx where gradf = ( ∂ f

∂x1
, · · · ,

∂ f
∂xd

) .

DEFINITION 3.4. LetΩ ⊂ Rd, and f ∈ L1(Rd); f belongs to BV(Ω) if∫
Ω

|D f | < +∞ .

Recall that the alternative definition is:f ∈ BV(Ω) if f ∈ L1(Ω) and gradf
(defined in the sense of distributions) is a Radon vector-measure of finite
mass.

What is the correct setting in order to perform the multifractal analysis of
a BV function? In dimension 1, the alternative definition in terms of Radon
measures immediately shows that aBV function is bounded (indeed a Radon
measure is the difference of two positive measures and the primitive of a
positive measure of finite mass is necessarily bounded). Therefore, one can
expect that theBV assumption has a consequence on the “usual” spectrum
df (H) based on the Ḧolder exponent. On the other hand, ifd > 1, then a
BV function need not be locally bounded (consider for instance the function

1
‖x‖α in a neighborhood of 0, forα small enough). A simple superposition
argument shows that it may even be nowhere locally bounded; therefore,
we cannot expect theBV assumption to yield any information concerning
the “usual” spectrum of singularities in dimension 2 or more. The following
Sobolev embeddings precisely determine for which values ofp aBV function
locally belongs toLp (see (Giusti, 1984)).

PROPOSITION 3.5. ((Giusti, 1984))Let d? = d
d−1 (d? is the conjugate

exponent of d). If f∈ BV(Rd) then

‖ f ‖d? ≤ C(d)
∫
|D f | . (12)

Moreover, if B= B(x0, r) and f B =
1

Vol(B)

∫
B

f (x)dx,

‖ f − f B‖Ld? (B) ≤ C(d)
∫

B
|D f | . (13)

Since (12) states thatBV(Rd) is embedded inLd?(Rd), we can infer from
this proposition that the “right” value ofp in order to study the pointwise
smooothness of functions inBV(Rd) is p = d?. The following result actually
gives estimates of thed?-spectrum ofBV functions.
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THEOREM 3.6. Let f ∈ BV(Rd). The d?-spectrum of f satisfies

dd?
f (H) ≤ H + (d − 1) .

Proof of Theorem 3.6.If d = 1, f is the difference of two increasing func-
tions. The theorem is a consequence of the classical boundd(H) ≤ H for
probability measures, see (Brown et al., 1992) and the remark that, ifH ≤
1, the size exponent of a positive measure and the Hölder exponent of its
primitive coincide. We can therefore assume thatd ≥ 2.

We can clearly suppose thatH ≤ 1. Let us considerf on the unit cube
[0,1]d and let j ≥ 0. We split this cube into 2d j dyadic cubes of width 2− j .
If λ is a dyadic cube inF j , let TV(λ) denote the total variation off on the
ball Bλ = B(µλ,

√
d2− j) whereµλ is the center ofλ, i.e. TV(λ) =

∫
Bλ
|D f | .

Let δ > 0 and denote byA(δ, j) the set ofλ’s such thatTV(λ) ≥ 2−δ j and by
N(δ, j) its cardinal. Since only a finite numberC̃(d) of ballsBλ overlap,

N(δ, j)2−δ j ≤
∑
λ∈A(δ, j)

TV(λ) ≤ C(d)
∫
|D f | .

Therefore

N(δ, j) ≤ C2δ j . (14)

Let x0 be such that it only belongs to a finite number ofA(δ, j). Let λ j(x0)
denote the dyadic cube of width 2− j which containsx0. For j large enough,
TV(λ j(x0)) ≤ 2−δ j . If B = B(x0,

√
d2−( j+1)), (13) implies that

‖ f − f B‖Ld? (B) ≤ C
∫

B
|D f | ≤ C

∫
Bλ
|D f | ≤ C2−δ j ;

thus, using Proposition 2.4,f ∈ Td?

δ−d/d?(x0) (= Td?
δ−d+1(x0)). Denote

Aδ = lim sup
j→+∞

A(δ, j) .

The setAδ consists of points that belong to an infinite number of setsA(δ, j).
Then, (14) implies that dimH (Aδ) ≤ δ. If x0 < Aδ, we just showed thatf ∈
Td?
δ−d+1(x0). It follows that the set of points ofd?-exponentδ − d + 1 is of

Hausdorff dimension at mostδ. In other words,dd?
f (δ − d + 1) ≤ δ, hence

Theorem 3.6 holds.

Remark: Let us pickδ > d − 1 but arbitrarily close tod − 1. We saw thatAδ
has dimension less thanδ and if x0 < Aδ, thenx0 belongs toTd?

α for anα > 0
so thatx0 is a Lebesgue point off . It follows that, if f is a BV function, then
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the set of points which are not Lebesgue points off has Hausdorff dimension
at mostd−1. Related results are proved in Section 5.9 of (Evans and Gariepy,
1992) (see in particular Theorem 3).

Theorem 3.6 only gives information on thed?-exponent and cannot give
additional information onq-regularity forq > d? since a function ofBV(Rd)
may nowhere be locally inLq for such values ofq. However, images are just
grey-levels at each pixel and therefore are encoded by functions that take
values between 0 and 1. Therefore, a more realistic modelling is supplied by
the assumptionf ∈ BV ∩ L∞. Let us now see if this additional assumption
allows us to derive an estimate on theq-spectrum.

LEMMA 3.7. Let f ∈ Tp
α (x0) ∩ L∞(Rd) for some p≥ 1 and let q satisfy

p < q < +∞. Then f∈ Tq
αp/q(x0).

Proof. By assumption,‖ f − f Br
‖Lp(Br ) ≤ Crα+d/p, whereBr denotes the ball

B(x0, r). Letω = p
q , so that 0< ω < 1; sincef is bounded, by interpolation,

‖ f − f Br
‖Lq(Br ) ≤ (2‖ f ‖∞)(1−ω)‖ f − f Br

‖ωLp(Br )
.

Therefore, ifβ = αp/q, then‖ f − f Br
‖Lq(Br ) ≤ Cr(α+d/p)ω = Crβ+d/q.

COROLLARY 3.8. Let f ∈ BV(Rd) ∩ L∞(Rd), and q≥ d?. The q-spectrum
of f satisfies

dq
f (H) ≤

q
d?

H + (d − 1) .

Remark: Of course this inequality is relevant only whenH ≤ d?
q .

Proof. We come back to the proof of Theorem 3.6. We proved that outside
the setAδ, f belongs toTd?

δ−d+1(x0). It follows from the previous lemma thatf

also belongs toTq
γ (x0) for γ =

(
δ − d

d?

)
d?
q =

δd?
q −

d
q. SinceAδ is of dimension

at mostδ, the corollary follows just as the end of Theorem 3.6.

4. Topological and geometric properties of the essential boundary

4.1. ESSENTIAL BOUNDARY AND MODIFIED DOMAIN

The geometric quantities introduced in Section 2 do not change ifΩ is re-
placed by another set̃Ω, as long as they differ by a set of measure 0. This
is clear when we consider the function 11Ω (viewed as aLp

loc-function), the
measure 11Ω(x)dxor the indicesαw, αs, βw andβs. Therefore, the only points
of the boundary that are pertinent to analyse from a “measure” point of view
are those for which∀r > 0, Vol(B(x0, r)∩Ω) > 0 andVol(B(x0, r)∩Ωc) > 0.
This motivates the following definition.
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DEFINITION 4.1. (Essential boundary)LetΩ be a Borel subset ofRd. De-
note by∂Ωessthe set of points x0 ∈ Rd such that for every r> 0,

Vol(B(x0, r) ∩Ω) > 0 and Vol(B(x0, r) ∩Ω
c) > 0 .

The set∂Ωessis called the essential boundary ofΩ.

It is clear that∂Ωess ⊂ ∂Ω. More precisely, we have the following charac-
terization of∂Ωess; recall that, if A and B are subsets ofRd, then A∆B =
(A∪ B) \ (A∩ B).

PROPOSITION 4.2. Let x ∈ Rd. Then, x ∈ ∂Ωess if and only if x is a
boundary point of every Borel setΩ′ such that Vol(Ω∆Ω′) = 0.

Remark: In particular,∂Ωessis a closed subset ofRd.

Proof of Proposition 4.2.Let

A =
⋂

Vol(Ω∆Ω′)=0

∂Ω′ .

It is clear that∂Ωess ⊂ A. Conversly, suppose for example that there exists
r > 0 such thatVol(Ω ∩ B(x, r)) = 0. DefineΩ′ by Ω′ = Ω \ B(x, r). Then
Vol(Ω∆Ω′) = 0 andx < ∂Ω′. •

The essential boundary can also be defined as the support of the distribu-
tion grad(11Ω). According to Proposition 4.2, it is natural to ask if there exists
a modified Borel set̃Ω which is minimal in the sense thatVol(Ω∆Ω̃) = 0 and
∂Ωess= ∂Ω̃.

PROPOSITION 4.3. (Modified domain)LetΩ be a Borel set inRd. There
exists a Borel set̃Ω such that

Vol(Ω∆Ω̃) = 0 and ∂Ωess= ∂Ω̃ .

In particular ∂Ω̃ ⊂ ∂Ω′ for everyΩ′ such that Vol(Ω∆Ω′) = 0. The Borel set
Ω̃ is called the modified domain ofΩ.

Remark: This notion is implicit in many books of geometric measure theory,
see for instance (Giusti, 1984) page 42. We can suppose in the following that
Ω = Ω̃ and∂Ωess= ∂Ω.

Proof of Proposition 4.3.Let (Bn)n∈N be a sequence of open balls which is a
base for the usual topology inRd. Let

I− = {n ∈ N ; Vol(Bn ∩Ω) = 0} and I+ =
{
n ∈ N ; Vol(Bn ∩Ω

c) = 0
}
.
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Observe that ifp ∈ I− andq ∈ I+, then,Bp ∩ Bq = ∅. Define

Ω̃ =

Ω \⋃
n∈I−

Bn

⋃
⋃
n∈I+

Bn

 .
It is clear thatVol(Ω∆Ω̃) = 0. There remains to prove that∂Ω̃ ⊂ ∂Ωess. Let
x ∈ ∂Ω̃ and r > 0. Let n be such thatx ∈ Bn ⊂ B(x, r). Sincex is in the
closure ofΩ̃, Bn ∩ Ω̃ , ∅. So,n < I− andVol(Bn ∩ Ω) > 0. In the same way,
x is in the closure of̃Ωc andBn ∩ Ω̃

c , ∅; thusn < I+ andVol(Bn ∩ Ω
c) > 0.

Finally Vol(B(x, r) ∩Ω) > 0 andVol(B(x, r) ∩Ωc) > 0 so thatx ∈ ∂Ωess. We
can also define theessential interiorand essential closureof Ω by

◦

Ω
ess
=

{
x ∈ Rd ; ∃r > 0 ; Vol(B(x, r) ∩Ωc) = 0

}
and

Ω
ess
=

{
x ∈ Rd ; ∀r > 0, Vol(B(x, r) ∩Ω) > 0

}
.

They are respectively open and closed subsets ofRd and satisfy

∂Ωess= Ω
ess
\
◦

Ω
ess
.

4.2. BALANCED POINTS

We now explore the topological properties of the sets of points of the essential
boundary∂Ωessfor which eitherβw or βs vanishes. We begin with a definition
which identifies natural subsets of the sets of points with accessibility 0.

DEFINITION 4.4. LetΩ ⊂ Rd be a Borel set and x0 ∈ ∂Ωess.

1. A point x0 is strongly balanced if there exists0 < η < 1/2 and r0 > 0
such that

∀r ≤ r0, η ≤
Vol(B(x0, r) ∩Ω)

Vol(B(x0, r))
≤ 1− η .

2. A point x0 is weakly balanced if there exists0 < η < 1/2 such that

∀r0 > 0, ∃r ≤ r0; η ≤
Vol(B(x0, r) ∩Ω)

Vol(B(x0, r))
≤ 1− η .

We denote byS B(Ω) (resp.WB(Ω)) the set of strongly (resp. weakly) bal-
anced points in∂Ωess. It is clear that

S B(Ω) ⊂
{
x0 ∈ ∂Ω

ess; βs(x0) = 0
}

and WB(Ω) ⊂
{
x0 ∈ ∂Ω

ess; βw(x0) = 0
}
.

Recall that Baire’s theorem asserts that, ifE is a complete metric set, a count-
able intersection of open dense sets is dense. A set which contains such an
intersection is calledgeneric.
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PROPOSITION 4.5.LetΩ be a Borel subset ofRd and∂Ωess its essential
boundary. The set WB(Ω) of weakly balanced points is generic in∂Ωess(for
the induced topology). As a consequence, the set of points x0 ∈ ∂Ω

esssuch
thatβw(x0) = 0 is generic in∂Ωess.

PROPOSITION 4.6.LetΩ be a Borel subset ofRd and∂Ωess its essential
boundary. The set S B(Ω) of strongly balanced points is dense in∂Ωess. As
a consequence, the set of points x0 ∈ ∂Ω

esssuch thatβs(x0) = 0 is dense in
∂Ωess.

Remark: It would be interesting to determine ifS B(Ω) is generic in∂Ωess.

Proof of Proposition 4.5.We first remark that Baire’s theorem can be applied
in ∂Ωess (because it is a closed subset ofRd). Let x0 ∈ ∂Ω

ess andε > 0.
Lebesgue’s differentiability theorem, applied to the Borel functionf = 11Ω
asserts that, for almost everyx ∈ Rd,

Vol(B(x, r) ∩Ω)
Vol(B(x, r))

−→ f (x) when r −→ 0 .

Recall that

Vol({x ∈ B(x0, ε/2) ; f (x) = 1}) > 0 andVol({x ∈ B(x0, ε/2) ; f (x) = 0}) > 0 .

We can then findy0, y1 ∈ B(x0, ε/2) such that

Vol(B(y0, r) ∩Ω)
Vol(B(y0, r))

≥
3
4

and
Vol(B(y1, r) ∩Ω)

Vol(B(y1, r))
≤

1
4

when r is small enough. Letyt = ty1 + (1 − t)y0. The intermediate value
theorem applied to the continuous function

t 7−→
Vol(B(yt, r) ∩Ω)

Vol(B(yt, r))

allows us to construct a pointx1 ∈ B(x0, ε/2) (which is equal toyt for some
value oft) such that

Vol(B(x1, r) ∩Ω)
Vol(B(x1, r))

=
1
2
.

Such an open ballB(x1, r) will be called a “perfectly balanced” ball. The
connexity of the ballB(x1, r) implies that it intersects∂Ωess(remember that
∂Ωessis the topological boundary of the modified domainΩ̃, see Proposition
4.3). Let On be the union of all the open balls of radiusr ≤ 1/n that are
“perfectly balanced”. We just have seen thatOn ∩ ∂Ω

ess is an open dense
subset of∂Ωess. So

⋂
n≥1 On∩∂Ω

essis a countable intersection of open dense
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subsets of the essential boundary∂Ωess. Moreover, ifx ∈
⋂

n≥1 On ∩ ∂Ω
ess,

we can find a sequence of pointsxn ∈ R
d and a sequence of positive real

numbersrn ≤ 1/n such that for everyn ≥ 1

x ∈ B(xn, rn) and Vol(B(xn, rn) ∩Ω) =
1
2

Vol(B(xn, rn)) .

We then have

2−(d+1)Vol(B(x,2rn)) ≤ Vol(B(x,2rn) ∩Ω) ≤ (1− 2−(d+1))Vol(B(x,2rn)),

which proves thatx ∈WB(Ω). •

Proof of Proposition 4.6.We develop the same idea as in Proposition 4.5. We
use the norm‖ ‖∞ instead of the Euclidian norm inRd and we will denote by
B∞(x, r) the “balls” related to this norm (which are cubes!). Letx0 ∈ ∂Ω

ess

andε > 0. Using the same argument as in Proposition 4.5, we can findx1 ∈

B∞(x0, ε/2) andr ≤ ε/2 such that

Vol(B∞(x1, r) ∩Ω)

Vol(B∞(x1, r))
=

1
2
.

The closed cubeB∞(x1, r) can be divided into 2d closed cubes of radius
r/2 whose interiors do not overlap. Suppose that none of them is “perfectly
balanced”. We can then find two pointsz0, z1 such that

B∞(z0, r/2) ⊂ B∞(x1, r), Vol(B∞(z0, r/2)∩Ω) >
1
2

Vol(B∞(z0, r/2))

B∞(z1, r/2) ⊂ B∞(x1, r), Vol(B∞(z1, r/2)∩Ω) <
1
2

Vol(B∞(z1, r/2)) .

Using once again the intermediate value theorem, we can construct a point
x2 (which is a barycenter ofz0 andz1) such thatB∞(x2, r/2) ⊂ B∞(x1, r) and
such that the ballB∞(x2, r/2) is “perfectly balanced”. Iterating this construc-
tion we obtain a sequence of “perfectly balanced” cubesB∞(xn, r2−(n−1)) such
that

B∞(xn+1, r2
−n) ⊂ B∞(xn, r2

−(n−1)) .

Let x∞ = limn→∞ xn and 0< ρ ≤ r. Let us denote byn the integer such that

r2−n <
ρ
√

d
≤ r2−(n−1) .

We observe that

B (x∞, ρ) ⊃ B∞
(
x∞, ρ/

√
d
)
⊃ B∞

(
x∞, r2

−n) ⊃ B∞
(
xn+2, r2

−(n+1)
)
.
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In other words, the ballB (x∞, ρ) contains a “perfectly balanced” cube with
length at leastρ/2

√
d. We deduce that
Vol(B(x∞, ρ) ∩Ω) ≥

1
2

(
ρ

2
√

d

)d

Vol(B(x∞, ρ) ∩Ω
c) ≥

1
2

(
ρ

2
√

d

)d ; (15)

(15) asserts thatx∞ ∈ S B(Ω). Moreover,‖x0 − x∞‖∞ ≤ ε and the proof is
finished.•

4.3. THE FRACTAL DIMENSION OF THE SET OF BALANCED POINTS

We first consider the dimension of the set of points of accessibility 0.

THEOREM 4.7. LetΩ be a Borel subset ofRd such that∂Ωess, ∅. Then

dimP (WB(Ω)) ≥ d − 1 .

Remark: In particular, dimP (∂Ωess) ≥ d − 1.

Let us begin with a lemma which is a slight modification of a well known
result (see (Falconer, 1990) or (Heurteaux, 2003)).

LEMMA 4.8. Let G be a nonempty subset ofRd which satisfies Baire’s prop-
erty (for the induced topology) andδ > 0. Suppose that for every x∈ G, and
every r> 0, ∆(G∩ B(x, r)) ≥ δ. ThendimP (G) ≥ δ .

Proof. Suppose thatG ⊂
⋃

n∈N En. Denote byEn the closure (inRd) of En.
Baire’s property implies that one of the related closed setsEn ∩ G has an
interior point inG. Thus there existx ∈ G, r > 0 andn0 ∈ N such that
G∩ B(x, r) ⊂ En0 ∩G , so that

∆(En0) = ∆(En0) ≥ ∆(En0 ∩G) ≥ ∆(G∩ B(x, r)) ≥ δ

and Lemma 4.8 follows.

Proof of Theorem 4.7.As in Section 4.2, letOn be the union of all “perfectly
balanced” open cubes of radiusr ≤ 1/n and letG =

⋂
n≥1 On ∩ ∂Ω

ess; G
is a denseGδ of the Baire space∂Ωess, so that it satisfies Baire’s property.
Moreover,G ⊂ WB(Ω). According to Lemma 4.8, it is sufficient to prove
that for everyx ∈ G and everyr > 0, ∆(G ∩ B(x, r)) ≥ d − 1. Let x ∈
G and r > 0. We can findy ∈ Rd andρ > 0 such that the cubeB∞(y, ρ)
is “perfectly balanced” andx ∈ B∞(y, ρ) ⊂ B(x, r). Let us split the cube
B∞(y, ρ) into 2d j cubes of length 2− j+1ρ which are calledCi . We want to
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estimate the numberN j of cubesCi that intersectG. For each cubeCi , let
ω(Ci) = Vol(Ci ∩ Ω)/Vol(Ci). The mean ofω(Ci) is 1/2. So, at least 1/3rd

of theω(Ci) are greater than 1/4 and 1/3rd of theω(Ci) are lower than 3/4.
Now, there are two possibilities: Either 1/6th of the cubesCi are such that
1/4 ≤ ω(Ci) ≤ 3/4; all those cubes intersectG (see the proof of Proposition
4.5 and 4.6) andN j ≥ 2d j/6. Else, there are at least 1/6th of the cubes such
thatω(Ci) ≤ 1/4 and 1/6th of the cubes such thatω(Ci) ≥ 3/4. Let A be the
union of all the closed cubesCi such thatω(Ci) ≤ 1/2. Then

1
6

Vol(B∞(y, ρ)) ≤ Vol(A) ≤
5
6

Vol(B∞(y, ρ)) .

Isoperimetric inequalities (see for example (Ros, 2005)) ensure that the “sur-
face” of the boundary ofA is at leastCρd−1. In particular, there exist at least
C(ρ)2 j(d−1) couples of cubes (C,C′) such thatC ∩ C′ , ∅, ω(C) ≤ 1/2 and
ω(C′) ≥ 1/2. It follows thatC ∩ G , ∅ or C′ ∩ G , ∅ (an intermediate
cube is “perfectly balanced”). It follows thatN j ≥ C2 j(d−1). In either case,
N j ≥ C2 j(d−1). So,∆(G∩ B(x, r)) ≥ d − 1. •

5. Multifractal properties of the essential boundary

5.1. CONSTRUCTION OF THE SCALING FUNCTION

We will construct a multifractal formalism based on the dyadic grid whose
purpose is to derive the Hausdorff (or packing) dimensions of the level sets
of the functionsαw andαs. Recall thatFn is the set of dyadic (semi-open)
cubes of scalen; denote byλn(x) the unique cube inFn that containsx. The
following proposition is a simple consequence of the inclusionsB(x,2−n) ⊂
3λn(x) ⊂ B(x,3

√
d2−n).

PROPOSITION 5.1.LetΩ be a Borel subset ofRd and x∈ ∂Ωess. Then

αw(x)+d = lim inf
n→+∞

logVol (3λn(x) ∩Ω)
−n log 2

, αs(x)+d = lim sup
n→+∞

logVol (3λn(x) ∩Ω)
−n log 2

.

Proposition 5.1 suggests to introduce a scaling function as follows. LetΩ be
a Borel set such that∂Ωessis bounded and not empty; let

S(q,n) =
∑
λ∈Fn

∗

(Vol(3λ ∩Ω))q where Fn
∗ = {λ ∈ Fn : λ ∩ ∂Ωess, ∅},

and

τ(q) = lim sup
n→+∞

1
n log 2

log(S(q,n)) . (16)
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The functionτ is decreasing and convex. The standard justification of the
multifractal formalism runs as follows: First, the contribution toS(q,n) of the
set of points where the (weak or strong) accessibility exponent takes a given
valueα is estimated. If the dimension of this set isd(α), then there are about
2d(α)n dyadic cubes inFn

∗ which cover this set; and such a cube satisfies
Vol(3λ ∩ Ω) ∼ 2−αn. Therefore the order of magnitude of the contribution
we look for is 2−(αq−d(α))n. Whenn → +∞, the preponderent contribution is
clearly obtained for the value ofα that minimizes the exponentαq−d(α); thus
τ(q) = infα(αq−d(α)). If d(α) is a concave function, then this formula can be
inverted andd(α) is recovered fromτ(q) by an inverse Legendre transform:

d(α) = inf
q

(αq+ τ(q)).

The multifractal formalism holds if, indeed, this relationship between the
scaling function and the spectrum of singularties holds. We give in Section
5.3 some results in this direction.

Remark 1: The factor 3 in the definition ofS(q,n) is not always used in the
derivation of the multifractal formalism for measures; however, it improves
its range of validity, as shown by R. Riedi (Riedi, 1995). The novelty in our
derivation is the restriction of the sum to the cubesλ such thatλ∩ ∂Ωess, ∅;

this allows to eliminate all the points in
◦

Ω
ess

and inRd \Ω
ess

.

Remark 2: In (Testud, 2006), Testud already introduced such a “restricted”
scaling function. In the context of his paper, a strange Cantor setK perturbs
the multifractal analysis of the measure. Multifractal formalism breaks down
at different levels. Testud introduces the scaling functionτK in which the sum
is restricted to the dyadic intervals that meet the Cantor setK and proves that
for all the “bad exponents”, the dimension of the level set is given by the
Legendre transformτ∗K .

5.2. PROPERTIES OF THE SCALING FUNCTION

THEOREM 5.2. LetΩ be a Borel subset ofRd such that∂Ωess is nonempty
and bounded. Defineτ(q) as in(16). The following properties hold.

1. τ(0) = ∆(∂Ωess) and∀q ≥ 0, τ(q) ≤ ∆(∂Ωess) − dq.

2. ∀q ≥ 0, τ(q) ≥ d − 1− dq.

3. ∀q ∈ R, dimP (S B(Ω)) ≤ τ(q) + dq.

4. ∀q ∈ R, dimH (WB(Ω)) ≤ τ(q) + dq.

Proof of Theorem 5.2.
1. If λ ∩ ∂Ωess , ∅, then,Vol(3λ ∩ Ω) > 0 and(Vol(3λ ∩Ω))0 = 1, thus



MULTIFRACTAL ANALYSIS OF IMAGES 23

τ(0) = ∆(∂Ωess). More precisely, ifq > 0, then∑
λ∈Fn

∗

(Vol(3λ ∩Ω))q ≤ Card (Fn
∗)(3.2−n)dq;

it follows thatτ(q) ≤ ∆(∂Ωess) − dq.

2. If n is large enough, using a similar argument as in Theorem 4.7, we can
find at leastc2(d−1)n cubes inFn

∗ which are “quite balanced”. These cubes
satisfyVol(3λ ∩Ω) ∼ 2−dn and the inequality follows.

3. It is easy to see thatx0 ∈ S B(Ω) if and only if there exists 0< η < 1/2 and
n0 such that

∀n ≥ n0, η ≤
Vol(3λn(x0) ∩Ω)

(3.2−n)d
≤ 1− η . (17)

Let Un0, η denote the set of points that satisfy (17). Letα < dimP (S B(Ω)).
We can findp,n0 ∈ N

∗ such that

∆(Un0,1/p) ≥ dimP (Un0,1/p) > α .

If Nk is the number of cubesλ ∈ Fk we need to coverUn0,1/p, then,Nk ≥ 2kα

infinitely often. Supposeq > 0 (the proof is similar ifq < 0). We get∑
λ∈Fk

∗

(Vol(3λ ∩Ω))q ≥ Nk

(
1
p

(3.2−k)d
)q

≥
3dq

pq 2k(α−dq)

infinitely often. We conclude thatτ(q) ≥ α − dq.

4. Note thatx0 ∈WB(Ω) if and only if there exists 0< η < 1/2 such that

∀n0, ∃n ≥ n0 ; η ≤
Vol(3λn(x0) ∩Ω)

(3.2−n)d
≤ 1− η . (18)

Let Vη denote the set of points that satisfy (18). Letp ∈ {2,3, · · ·}, n0 ∈ N
∗

and suppose thatq > 0 (the proof is similar ifq < 0). We can coverV1/p with
cubes of scalen ≥ n0 such thatVol(3λ ∩ Ω) ≥ 1

p(3.2−n)d. Let R be such a
covering andτ′ > τ(q). We have∑

λ∈R

diam (λ)τ
′+dq ≤ C

∑
λ∈R

(Vol(3λ ∩Ω))q diam (λ)τ
′

≤ C
∑
n≥n0

 ∑
λ∈Fn

∗

(Vol(3λ ∩Ω))q

 2−nτ′ .
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Moreover, ifτ′ > τ′′ > τ(q) andn0 sufficiently large, then∑
λ∈Fn

∗

(Vol(3λ ∩Ω))q ≤ 2nτ′′ .

It follows that∑
λ∈R

diam (λ)τ
′+dq ≤ C

∑
n≥n0

2n(τ′′−τ′) ≤
C

1− 2τ′′−τ′
.

We conclude that dimH (V1/p) ≤ τ′ + dqand dimH (WB(Ω)) ≤ τ′ + dq.

5.3. THE MULTIFRACTAL FORMALISM ASSOCIATED WITH∂Ωess

The proofs of points 3 and 4 in Theorem 5.2 allow to obtain estimates of the
level sets of accessibility index.

THEOREM 5.3. LetΩ be a Borel subset ofRd such that∂Ωess is nonempty
and bounded. Defineτ(q) as in(16). If α ≥ 0, let

Ew
α =

{
x ∈ ∂Ωess; αw(x) ≤ α

}
and Es

α =
{
x ∈ ∂Ωess; αs(x) ≤ α

}
.

For every q> 0,

dimH (Ew
α ) ≤ (d + α)q+ τ(q) and dimP (Es

α) ≤ (d + α)q+ τ(q) .

In particular, if α + d ≤ −τ′−(0), then

dimH (Ew
α ) ≤ τ∗(α + d) and dimP (Es

α) ≤ τ
∗(α + d) .

The proof uses the same ideas as in Theorem 5.2 and requires to introduce the
set of pointsx ∈ ∂Ωesssuch thatVol (3λn(x) ∩Ω) ≥ 2−n(α+d+ε) infinitely often
(resp. for n large enough). In the same way, we can also prove the following
twin result.

THEOREM 5.4. LetΩ be a Borel subset ofRd such that∂Ωess is nonempty
and bounded. Defineτ(q) as in(16). If α ≥ 0, let

Fw
α =

{
x ∈ ∂Ωess; αw(x) ≥ α

}
and Fs

α =
{
x ∈ ∂Ωess; αs(x) ≥ α

}
.

For every q< 0,

dimP (Fw
α ) ≤ (d + α)q+ τ(q) and dimH (Fs

α) ≤ (d + α)q+ τ(q) .

In particular, if α + d ≥ −τ′+(0),

dimP (Fw
α ) ≤ τ∗(α + d) and dimH (Fs

α) ≤ τ
∗(α + d) .
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Remark 1: The setEs
α (resp.Fw

α ) is quite similar to the set of strongα-
accessible points (resp. weakα-accessible points).

Remark 2: The results in Theorem 5.3 and 5.4 are standard multifractal
inequalities adapted to the context of boundaries (see (Brown et al., 1992)).
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