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ABSTRACT. Speech is one of the most common and richest methods that people
use to communicate with one another. Our facility with this communication form
makes speech a good interface for communicating with or via computers. At the same
time, our familiarity with speech makes it difficult to generate synthetic but natural-
sounding speech and synthetic but natural-looking lip-synced faces. One way to re-
duce the apparent unnaturalness of synthetic audible and visual speech is to modify
natural (human-produced) speech. This approach relies on examples of natural speech
and on simple models of how to take those examples apart and to put them back to-
gether to create new utterances.

We discuss two such techniques in depth. The first technique,Mach1, changes the
overall timing of an utterance, with little loss in comprehensibility and with no change
in the wording of or emphasis within what was said or in the identity of the voice.
This ability to speed up (or slow down) speech will make speech a more malleable
channel of communication. It gives the listener control over the amount of time that
she spends listening to a given oration, even if the presentation of that material is
prerecorded. The second technique,Video Rewrite, synthesizes images of faces, lip
synced to a given utterance. This tool could be useful for reducing the data rate for
video conferencing [31], as well as for providing photorealistic avatars.

1. Overview

Speech is one of the most common and richest methods that people use to communicate with
one another. We learn to speak earlier than we learn to read or write, and we use speech
to interact with other people throughout our lifetimes. In addition to literal meaning of the
words, our utterances carry information in emphasis and emotion, as well as indications of
the gender, identity, and health of the speaker. When we can see the speaker as well as listen
to her, we use both her facial gestures and the audio signal to understand her utterance’s basic
meaning and the nuances of identity and emotion carried therein.

Our facility with this communication form makes speech a good interface for communi-
cating with or via computers. Certainly the use of speech as an interface medium is growing,
most notably in automated dictation-transcription machines and in information services for
constrained applications, such as directory assistance. Yet it is difficult to generate synthetic
but natural-sounding speech and synthetic but natural-lookingvisual speech—that is, syn-
thetic talking faces. Part of this difficulty arises because of our facility and familiarity with
speech: We have listened to and watched other people talk for our whole lives, so we quickly
hear and see artifacts in synthetic speech.

One way to reduce the apparent unnaturalness of synthetic audible and visual speech is to
modify natural (human-produced) speech. This approach allows us to avoid using a detailed
hand-coded or analytic model of how speech is produced and how the facial structures move

The description of Mach1 has been previously published [11]. A more complete description of the listeners’
test can be found in that reference. Similarly, the description of Video Rewrite has been previously published [5].
Again, a more complete description of the results of our syntheses can be found in that reference.

1C. Bregler is currently affiliated with New York University.
2M. Withgott is currently affiliated with Electric Planet, Inc.
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TABLE 1. Categories of audible and visual speech modification

changed
properties

unchanged
properties

Audible Speech
Visual Speech

(face, lips)
overall
timing

identity,
wording

time-scale modification
(Mach1)

wording identity
concatenative speech

synthesis [26]
data-driven synthetic

lip sync (Video Rewrite)

to produce it. Rather, it relies on simpler, less comprehensive models; it makes up for this low
level of modeling by using the information implicit in the natural-speech samples that have
been collected. It replaces the assumption that we can create comprehensive models of vocal
tracts, faces, emphasis, and timing by using examples of natural speech and simple models
of how to take those examples apart and to put them back together in new sequences.

There are many different types of information provided by speech—wording, timing, em-
phasis, emotion, identity—so there are many different ways in which speech can be modified
(Table 1). Here, we consider methods for changing the timing and the wording of visual
speech. Good discussions of identity changes are available elsewhere [2, 27, 35, 39]. Current
understanding of how emphasis and emotion are conveyed and how they should be modified
is incomplete.

We discuss only two techniques in depth. The first technique,Mach1, changes the overall
timing of an utterance, with little loss in comprehensibility and with no change in the wording
of or emphasis within what was said or in the identity of the voice. This ability to speed up
(or slow down) speech will make speech a more malleable channel of communication. It
gives the listener control over the amount of time that she spends listening to a given oration,
even if the presentation of that material is prerecorded. Other features that would increase the
listener’s control over a presentation are the ability to jump to new sentences [1], the ability
to find and jump to topic changes [38], and the ability to listen to a summary of what was
said [8].

The second technique,Video Rewrite, provides facial animations, lip synced to a given
utterance. This tool could be useful for reducing the data rate for video conferencing [31],
as well as for providing photorealistic avatars. With Video Rewrite, a low-data-rate video
conferencing system could transmit video models of the participants beforehand and only
the audio would be transmitted during the actual conferencing session. Another tool would
detect emotion in the audio track [36] and adjust the facial expression accordingly. With
synthetic talking faces (such as from Video Rewrite) and text-to-speech capabilities (such as
from concatenative speech synthesis [26]), we can build avatars and computer agents who
talk to us in speech that is natural and comprehensible (instead of simply putting text on a
screen), and who are represented by lip-synced facial displays.

2. Modification of Overall Timing

At times, we may wish to listen to speech at an overall rate faster than the one at which it was
originally spoken. For example, voice mail makes it easy and attractive for callers to leave
impromptu messages. In contrast, listening to voice-mail messages at their recorded speed
is often time-consuming and tedious compared to glancing at a written note. Voice-mail
messages are more manageable when the listener can control the playback speed. Similarly,
being able to listen to the sped-up audio track of a video in fast forward would be useful
when cueing video. However, speeding up the signal would be useful only if we could still
understand the content.
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FIGURE 1. Time compression using SOLA.
SOLA starts by “chunking” the input into frames; then, based on the target compression rate, it

computes a rough estimate of the output-frame spacing. This final spacing is set to the position of the
maximum cross correlation near the desired spacing. SOLA creates the output audio by cross fading

frames, using this new frame offset.

At first glance, this modification would seem simple: just play the sound back fast. The
most basic version of this approach results in pitch- and formant-frequency shifts: We hear
sounds like Mickey Mouse’s high-pitched voice. We can use an algorithm called synchronous
overlap add (SOLA) [32] with digital recordings to avoid these frequency shifts (Figure 1),
as long as the playback rate is less than two times faster than the original recording rate. At
faster rates, the time-compressed speech quickly takes on an unnatural cadence and becomes
incomprehensible to most untrained listeners.

This limited range of playback rates restricts the applications in which time compression
of speech can be used. Most people do video searches with consumer VCRs at rates much
faster than twice real time. Although people would like to listen to the audio track, as well as
to watch the video track, while cueing a tape to the desired material, it is not at all clear that
they would accept slower fast-forward rates in exchange for this option.

2.1. Linear Time Compression

Time-compression techniques change the playback rate of speech without introducing pitch
artifacts. As we stated, human comprehension of linearly time-compressed speech typically
degrades at compression rates above two times real time [17]. These degradations are due
neither to the speech rate per se nor to the number of words per minute (wpm) [14]. Most
people cannot comprehend more than 270 wpm in compressed speech, even though they can
understand quickly spoken passages of natural speech at up to 500 wpm [12].

The incomprehensibility of time-compressed speech is due to unnatural timing. Mach1,
described in Section 2.2, provides an alternative to linear time compression. Mach1 com-
presses the components of an utterance in a way that resembles closely the natural timing
of fast speech. Section 2.3 describes our test of comprehension and preference levels for
Mach1-compressed and linearly compressed speech.

2.2. Mach1 Time Compression

Mach1 mimics the compression strategies that people use when they talk fast in natural set-
tings. We used linguistic studies of natural speech [42,46] to derive these goals:

� Compress pauses and silences the most
� Compress stressed vowels the least
� Compress schwas and other unstressed vowels by an intermediate amount
� Compress consonants based on the stress level of the neighboring vowels
� On average, compress consonants more than vowels
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FIGURE 2. Overview of Mach1.
Mach1 first estimates the local emphasis and relative speaking rate. It then locally modifies the global
target compression rate using a combination of those measures. The resulting locally varying target

rate drives any standard time-scale-modification technique.

Also, to avoid obliterating very short segments, we want to avoid overcompressing already
rapid sections of speech.

Unlike previous techniques [1, 21], Mach1 deliberately avoids categorical recognition
(such as silence detection andphoneme1 recognition). Instead, as illustrated in Figure 2, it
estimates continuous-valued measures of local emphasis and relative speaking rate. Together,
the sequences of the values of these two measures estimate what we callaudio tension: the
degree to which a given local speech segment is a poor candidate for faster playback rates.
High-tension segments are less compressible than are low-tension segments. Based on the
audio tension, we modify the general, preset target compression rate to a local target com-
pression rate on the local speech segment. We use the local target rates to drive a standard,
time-scale modification technique (e.g., synchronized overlap add [32]).

In Sections 2.2.1 through 2.2.3, we discuss the local-emphasis measure, the relative-
speaking-rate measure, and the technique that we use to combine them. The Mach1 algorithm
is explained in greater detail elsewhere [11].

2.2.1. Measure of Local Emphasis.We use thelocal-emphasis measureto distinguish among
silence, unstressed syllables, and stressed syllables. Emphasis in speech correlates with rel-
ative loudness, pitch variations, and duration [8]. Of these, relative loudness is the easi-
est to estimate. Reliable pitch estimation is notoriously difficult. Reliable duration estima-
tion requires phoneme recognition, because natural durations are highly phoneme dependent.
Therefore, we rely on relative loudness to estimate emphasis.

To estimate local emphasis, we first calculate the local energy. Since emphasis is indicated
more by relative loudness than by absolute loudness, we normalize our local energy by the
local average energy.

These variations of the local relative energy are not linearly related to our goal: control-
ling the segment-duration variations to mimic those seen in natural speech. Instead, the local
relative energy displays much larger upward variations than are observed in emphasized-
segment durations, and much smaller downward variations than are seen in pause and un-
emphasized segment durations [11, 38, 41]. Therefore, we estimate theframe emphasisby
applying a compressive function to the relative energy. The compressive function reduces the
dynamic range of the high-relative-energy segments (the emphasized vowels) and expands
the dynamic range of the low-relative-energy segments (the unemphasized vowels and the
pauses).

1Phonemesare the distinct sounds within a language, such as the /IY/ and /P/ in “teapot.”
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Human speech perception and production is in part determined by temporal grouping ef-
fects, especially within syllables [46] and within silences that immediately proceed or follow
sounds [1,38]. To account for these temporal-grouping effects, we apply a 200-msec, tapered,
temporal hysteresis to the frame emphasis to give our final local-emphasis estimates.

2.2.2. Measure of Relative Speaking Rate.We estimate the speaking rate to avoid overcom-
pressing, and thereby obliterating, already-rapid speech segments. True speaking rate is dif-
ficult to measure. We can compute easily, however, measures of acoustic-variation rates,
which covary with speaking rates. Conceptually, we are using the phoneme-transition rate
to estimate speaking rate: The higher the transition rate, the faster the speaking rate. By
lowering our compression during transitions, we effectively lower the compression of rapid
speech. This approach also has the advantage of preserving phoneme transitions, which are
particularly important for human comprehension [13,37]. In practice, we use relative acous-
tic variability, instead of transition labels, to modulate the compression rate, thereby avoiding
categorical errors and simplifying the overall estimation process.

Our estimate of relative acoustic variability starts with a local spectral estimate. To avoid
unreliable estimates in low-energy regions, we set to the previous frame’s values each frame
whose energy level is below a dynamic threshold. We then sum the absolute log ratios be-
tween the current and the previous frames’ values to estimate the local spectral difference.
We use a log amplitude scale, instead of a linear one, because intensity-discrimination studies
suggest that human perception of acoustic change is more closely approximated by the log
scale [24]. Again, to avoid overestimating the spectral difference, we normalize each frame’s
values by that frame’s total energy level, then sum over only the most energetic bins.

Different speaking styles and different recording environments introduce wide deviations
in our absolute spectral-difference measure. To avoid heavy influence from these variables,
we normalize our spectral difference by the local average difference. These variations of
the relative spectral difference overestimate the upward variations in relative speaking rate
[11, 41, 42]. Therefore, we estimate therelative speaking rateby applying a compressive
function to the relative spectral difference.

2.2.3. Local Target Compression Rates.The local-emphasis and relative-speaking-rate mea-
sures depend purely on the audio signal that we plan to modify. They can be computed as the
signal is being recorded. What remains is to combine these two measures to get theaudio
tension, which is a single measure of the compressibility of the underlying speech, and to
combine the audio tension with the listener’s target compression (or expansion) rate.

We compute audio tension from local emphasis and relative speaking rate using a simple
linear formula. The audio tension increases as the local emphasis increases, from low ten-
sion (comparatively large compressions) in regions of silence to high tension (comparatively
small compressions) in stressed segments. The audio tension also increases as the relative
speaking rate increases, from low tension (large compressions) in regions of slow speech to
high tension (small compressions) in regions of fast speech.

From audio tension,(t), and from a desired global compression rate,Rg, we compute
local target rates,r(t), as2

r(t) = maxf1; Rg + (1� Rg)(t)g:

We use these target local compression rates as an input to standard time-scale-modification
techniques. With SOLA (Figure 1), for example, we use the local target rates to set, frame by
frame, the target offset between the current and previous frames in the output audio signal.

2In this equation forr(t), we assume that compression rates are expressed as numbers greater than 1. Using
this convention, the offset between time frames of the output is set to1=r(t) times the input frame offset for
compression.
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FIGURE 3. Plot of differ-
ence in comprehension be-
tween Mach1 and linear
compression as a function
of compression rate.

The results of linear regression are shown
as a solid line.

The sequence of local compression (or expansion) rates typically gives the overall com-
pression (expansion) rates near the requested global rate,Rg. However, there is no guarantee
that this global rate will be achieved. In cases where the global compression rate is impor-
tant, we add a slow-response feedback loop around the previously described system. This
feedback loop acts to correct long-term errors in the overall compression (expansion) rate by
adjusting the nominal value ofRg appropriately.

2.3. Comparison of Mach1-Compressed and Linearly Compressed Speech

We conducted a listener test comparing Mach1-compressed speech to linearly compressed
speech. The details of our method and of the statistical analysis we did on the results are
given elsewhere [11]. A portion of the listener test can be found on our web page

http : ==www:interval:com=papers=1997 � 061=

2.3.1. Method. We used 108 audio clips, taken from Kaplan’s TOEFL study program [33].
These audio clips cover three different discourse styles: short dialogs (1 sentence/turn, 1
turn/speaker); long dialogs (2 to 5 sentences/turn; 3 or 4 turns/speaker); and monologs (9
to 15 sentences). We used these audio clips for comparative studies of comprehension and
preference between Mach1 compression and linear compression.

For these tests, we used both Mach1 compression and linear compression on each audio
clip. We ran Mach1 compression first, withRg = 3, and without correction of the overall
compression rate. We computed the true compression rate achieved by Mach1 on each audio
sample. We then recompressed each original, uncompressed clip linearly to the same global
rate that the Mach1 compression achieved. This process ensured that the two versions had
the same overall compression rate.

This group of 108 time-compressed audio clips were split into two balanced pools and
were tested with 14 adult subjects who are fluent in English. In the comprehension sections
of the test, one-half of the subjects heard the first audio pool compressed with Mach1 and
the second audio pool compressed linearly. The other half of the subjects heard the com-
plementary set of compressed clips: the first audio pool compressed linearly and the second
audio pool compressed with Mach1. In the preference section, both Mach1-compressed and
linearly compressed versions of the selected audio samples were played, so the subjects could
make direct comparisons between the compression techniques.

2.3.2. Results.Mach1 compression offers significant improvements in comprehension over
linear compression, especially at high compression rates. Mach1 improved comprehension by
25 percent over linear compression, at the same global rates. The difference in comprehension
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rates increased with the compression rate (Figure 3). Listeners preferred Mach1-compressed
speech over linearly compressed speech in 95 percent of cases; this preference for Mach1
increased with the compression rate.

Mach1 provided the greatest improvement (38 percent on average) in comprehension
when used on short dialogs, where linear compression limited comprehension substantially.
Improvements were less marked with the longer clips (13 percent with monologs, and 7
percent—not statistically significant atp < 0:05—with long dialogs). The short dialogs
(average 23 words) are significantly shorter than the other clips (average 144 and 187 words
for the long dialogs and monologs). One possible explanation for the lower comprehension
of the linearly compressed short dialogs is that the most information is lost at the beginning of
the clips, while the subjects adjust to the unnatural speaking style. The absence of a similar
decrease in comprehension of Mach1-compressed short dialogs suggests that the listener-
adjustment period is much shorter when Mach1 is used.

Note that, with Mach1 compression, there wasnostatistically significant loss in compre-
hension as a function of compression rate. One hypothesis explaining the uniform compre-
hension results across achieved compression rates is that the Mach1 audio-tension measure
captures the relative compressibility of each audio clip. Mach1 itself determined the distribu-
tion of compression rates. It was given a nominal compression target of three times real time,
but was allowed to deviate from that target. Mach1 may be providing a predictable overall
comprehensibility, rather than a predictable overall compression rate.

Variable-rate compression of speech is a promising notion in time-scale modification.
It should allow us to improve our comprehension rates by using approaches suggested by
linguistic and text-to-speech studies. Still unanswered, however, is the question of how best
to measure paralinguistic qualities, such as emphasis and relative speaking rate. The Mach1
approach avoids categorical labels and relies on easily measurable acoustic correlates. It
confers significant improvements in comprehension over linear compression.

3. Modification of Visual Speech

Humans are extremely sensitive to the synchronization between speech and lip motions. Low-
data-rate video conferencing and photorealistic avatars raise our expectations for realistic lip
motions, making incorrect lip sync especially jarring. Similarly, interfaces to computers that
use realistic human faces require high-quality lip sync to maintain the illusion of face-to-
face interaction. In this section, we review facial animation systems for lip sync. We then
discuss in more detailVideo Rewrite,a video-based facial animation system for photorealistic
synthetic lip sync.

Facial-animation systems build a model of how a person speaking sounds and looks. They
use this model to generate a new output sequence, which matches the (new) target utterance.
On the model-building side (analysis), there are typically three distinguishing choices: how
the facial appearance is learned or described, how the facial appearance is controlled or la-
beled, and how thevisemelabels are learned or described. Visemes are the visual counterpart
to phonemes: Visemes are visually distinct mouth, teeth, and tongue articulations for a lan-
guage. For example, the phonemes /B/ and /P/ are visually indistinguishable and are grouped
into a single viseme.

For output-sequence generation (synthesis), the distinguishing choice among facial-ani-
mation systems is how the target utterance is characterized. We review a representative sam-
ple of past research in these areas.

Many facial-animation systems use a generic 3D mesh model as the source for facial
appearance [15, 22, 29], sometimes adding texture mapping to improve realism [9, 25, 44].
Another synthetic source of face data is hand-drawn images [23]. Other systems use images
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of real faces for their source examples, including 3D scans [45] and still images [34]. We use
video footage to train Video Rewrite’s models.

Once a facial model is captured or created, the control parameters that exercise that model
must be defined. In systems that rely on a 3D mesh model for appearance, the control param-
eters are the allowed 3D mesh deformations. Most image-based systems label the positions
of specific facial locations (for example, the bottom of the chin) as their control parameters.
Most such systems rely on manual labeling of each example image [23, 34]. Video Rewrite
creates its video model by automatically labeling specific facial locations (Section 3.2.1).

The final step in the analysis stage is acquiring the viseme labels. Many facial-animation
systems label different visual configurations with an associatedphoneme. These systems
then match these phoneme labels with their corresponding labels in the target utterance. With
synthetic images, the phoneme labels are artificial or are learned by analogy [25]. When the
system uses natural images, taken from a video of a person speaking, the phonemic labels can
be generated manually [34] or automatically. Video Rewrite determines the phoneme labels
automatically (Section 3.2.2).

As we mentioned, for output-sequence generation (synthesis), the distinguishing choice
is how the target utterance is characterized. The goal of facial animation is to generate an
image sequence that matches this target utterance. When phoneme labels are used, those for
the target utterance can be entered manually [34] or computed automatically [22,25]. Another
option for phoneme labeling is to create the new utterance with synthetic speech [9, 29, 44].
Approaches that do not use phoneme labels include motion capture of facial locations that
are artificially highlighted [15, 45] and manual control by an animator [23]. Video Rewrite
uses a combination of phoneme labels (from the target utterance) and facial-location labels
(from the video-model segments). Video Rewrite derives all these labels automatically.

3.1. Overview of Video Rewrite

Video Rewriteprovides video-based synthetic lip sync, using an approach similar to con-
catenative speech synthesis.Concatenative speech synthesis[26] is a recent and successful
approach to changing wording, providing the audio back-end to high-quality text-to-speech
translation systems. Instead of modeling the vocal tract, concatenative speech synthesis an-
alyzes a corpus of speech, selects examples of phonemes, and normalizes those examples.
Concatenative speech then synthesizes new words by concatenating proper sequences of
phonemes, then warping pitch and duration to create speech that sounds natural. This data-
driven approach to synthesis is more effective at capturing the nuances of human speech than
are approaches that rely primarily on hand-coded rules about speech.

Similarly, Video Rewrite creates new videos in two steps: analysis of a training database
and synthesis of new footage. In theanalysisstage, Video Rewrite automatically segments
into phonemes the audio track of the training database. We use these labels to segment the
video track as well. We automatically track head pose and facial features in this segmented
footage. To track the facial features, Video Rewrite requires a small number (about 25) of
hand-labeled images that indicate the locations of specific points on the speaker’s face. The
hand labeling of these images is the only human annotation or intervention that is required.3

The steps used in the analysis stage are shown in Figure 4.
In the synthesisstage, our system uses this video database with a new utterance. It re-

trieves the appropriate viseme sequences automatically. Video Rewrite blends the viseme
sequences together and into a background scene using morphing techniques. The result is a
new video of a person whose lip and jaw movements synchronize to the new audio. The steps
used in the synthesis stage are shown in Figure 5.

3Even this level of human interaction is not a fundamental requirement: We could use face-independent
models instead [10,18].
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In the remainder of this section, we describe the analysis (Section 3.2) and synthesis (Sec-
tion 3.3) stages of Video Rewrite. We then conclude by describing our results (Section 3.4).

3.2. Analysis Stage of Video Rewrite

As shown in Figure 4, the analysis stage of Video Rewrite creates an annotated database
of example video clips, derived from unconstrained footage. We refer to this collection of
annotated examples as avideo model. This model captures how the subject’s mouth and
jaw move during speech. Thesetraining videosare labeled automatically with the phoneme
sequence uttered during the video, and with the locations of fiduciary points that outline the
lips, teeth, and jaw.

As we shall describe, the phonemic labels are from a time-aligned transcript of the speech,
generated by a hidden Markov model (HMM). Video Rewrite uses the phonemic labels from
the HMM to segment the input footage into short video clips, each showing three phonemes
or a triphone. Thesetriphone videos, with the fiduciary-point locations and the phoneme
labels, are stored in the video model.

In Sections 3.2.1 and 3.2.2, we describe the visual and acoustic analyses of the video
footage. In Section 3.3, we explain how Video Rewrite uses this model to synthesize new
video.

3.2.1. Annotation Using Image Analysis.Video Rewrite can use any footage of the subject
speaking; it is not constrained to use footage of actors with artificially highlighted lips. As
her face moves within the frame, we need to know the mouth position and the lip shapes at
all times; this information is provided by the image annotations of the analysis stage. In the
synthesis stage, we use this information to warp overlapping videos such that they have the
same lip shapes, and to align the lips with the background face.

Manual labeling of the fiduciary points around the mouth and jaw is error prone and te-
dious. Instead, we use computer-vision techniques to label the face and to identify the mouth
and its shape. A major hurdle to automatic annotation is the low resolution of video images.
In a typical scene, the lip region has a width of only 40 pixels. Conventional contour-tracking
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algorithms [16, 47] work well on high-contrast outer-lip boundaries with some user interac-
tion, but fail on inner-lip boundaries at this resolution, due to the low signal-to-noise ratios.
Grayscale-based algorithms, such as eigenimages [18, 40], work well at low resolutions, but
estimate only the location of the lips or jaw, rather than estimating the desired fiduciary points.
Theeigenpointsalgorithm [10], and other extensions of eigenimages [20], estimate control
points reliably and automatically, even in such low-resolution images. As shown in Figure 6,
eigenpoints learns how fiduciary points move as a function of the image appearance, and then
uses this model to label new footage.

Video Rewrite labels each image in the training video using a total of 54 eigenpoints: 34
on the mouth (20 on the outer boundary, 12 on the inner boundary, 1 at the bottom of the
upper teeth, and 1 at the top of the lower teeth) and 20 on the chin and jaw line. There are two
separate eigenpoint analyses. The firsteigenspacecontrols the placement of the 34 fiduciary
points on the mouth, using pixels around thenominal mouth location—a region that covers
the mouth completely. The second eigenspace controls the placement of the 20 fiduciary
points on the chin and jaw line, using pixels around thenominal chin location—a region that
covers the upper neck and the lower part of the face.

We create the two eigenpoint models for locating the fiduciary points from a small number
of images: usually 20-30, depending of the variation in head pose. We extend the hand-
annotated dataset by left-right flipping images and by morphing pairs of annotated images to
form intermediate images, expanding the original set ofn hand-annotated images to2n2 + n
annotated images without any additional manual work. We then derive eigenpoints models
using this extended data set.

We use eigenpoints to find the mouth and jaw and to label their contours. The derived
eigenpoint models locate the facial features using six basis vectors for the mouth and six
different vectors for the jaw. Eigenpoints then places the fiduciary points around the feature
locations: 32 basis vectors place points around the lips, and 64 basis vectors place points
around the jaw.

Eigenpoints assumes that the features (the mouth or the jaw) are undergoing pure trans-
lational motion. It does a comparatively poor job at modeling rotations and scale changes.
Yet, Video Rewrite is designed to use unconstrained footage. We expect rotations and scale
changes. Subjects may lean toward the camera or turn away from it, tilt their heads to the
side, or look up from under their eyelashes.

To allow for a variety of motions, we warp each face image into a standard reference
orientation, prior to eigenpoints labeling. We find the global transform that minimizes the
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mean-squared error between a large portion of the face image and a facial template. We cur-
rently use an ellipsoidal transform, followed by an affine transform [4]. The ellipsoid allows
us to describe the curvature of the face and to compensate for changes in pose. Subsequent
processing using an affine transform provides more accurate and reliable estimates of the
head’s translation and rotation. The mask shown in Figure 7 defines the support of these
minimization integrals. Once the best global mapping is found, it is inverted and applied to
the image, putting that face into the standard coordinate frame. We then perform eigenpoints
analysis on this pre-warped image to find the fiduciary points. Finally, we back-project the
fiduciary points through the global warp to place them on the original face image.

3.2.2. Annotation Using Audio Analysis.All the speech data in Video Rewrite (and their as-
sociated video clips) are segmented into sequences of phonemes. Although single phonemes
constitute a convenient representation for linguistic analysis, they are not appropriate for
Video Rewrite. We want to capture the visual dynamics of speech. To do so correctly, we
must considercoarticulation, which causes the lip shapes for many phonemes to be modified
based on the phoneme’s context. For example, the /T/ in “beet” looks different from the /T/
in “boot.”

Therefore, Video Rewrite segments speech and video into triphones: collections of three
sequential phonemes. The word “teapot” is split into the sequence of triphones /SIL–T–IY/,4

/T–IY–P/, /IY–P–AA/, /P–AA–T/, and /AA–T–SIL/. When we synthesize a video clip, we
emphasize the middle of each triphone, and cross-fade the overlapping regions of neighboring
triphones. We thus ensure that the precise transition points are not critical, and that we can
capture effectively many of the dynamics of both forward and backward coarticulation.

Video Rewrite uses HMMs [30] to label the training footage with phonemes. We trained
the HMMs using the TIMIT speech database [19], a collection of 4200 utterances with phone-
mic transcriptions that gives the uttered phonemes and their timing. Each of the 61 phoneme
categories in TIMIT is modeled with a separate three-state HMM. The emission probabilities
of each state are modeled with mixtures of eight Gaussians with diagonal covariances. For
robustness, we split the available data by gender and train two speaker-independent, gender-
specific systems, one based on 1300 female utterances, and one based on 2900 male utter-
ances.

We use these gender-specific HMMs to create a fine-grained phonemic transcription of
our input footage, usingforced Viterbi search[43]. Forced Viterbi uses unaligned sentence-
level transcriptions and a phoneme-level pronunciation dictionary to create a time-aligned
phoneme-level transcript of the speech. From this transcript, Video Rewrite segments the
video automatically into triphone videos, labels them, and includes them in the video model.

3.3. Synthesis Stage of Video Rewrite

As shown in Figure 5, Video Rewrite synthesizes the final lip-synced video by labeling the
new speech track, selecting the sequence of triphone videos that most accurately matches the
new speech utterance, and stitching these images into a background video.

The background video sets the scene and provides the desired head position and move-
ment. The background sequence in Video Rewrite includes most of the subject’s face, as
well as the scene behind the subject. The frames of the background video are taken from the
source footage in the same order as they were shot. The head tilts and the eyes blink, based
on the background frames.

In contrast, the different triphone videos are used in whatever order is needed. They sim-
ply show the motions associated with articulation. The triphone images include the mouth,

4/SIL/ indicates silence. Two /SIL/ in a row are used at the beginnings and ends of utterances to allow all
segments-including the beginning and end-to be treated as triphones.
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chin, and part of the cheeks, so that the chin and jaw move and the cheeks dimple appropri-
ately as the mouth articulates. We use illumination-matching techniques [7] to avoid visible
seams between the triphone and background images.

The first step in synthesis (Figure 5) is labeling the new soundtrack. We label the new
utterance with the same HMM that we used to create the video-model phoneme labels. In
Sections 3.3.1 and 3.3.2, we describe the remaining steps: selecting triphone videos and
stitching them into the background.

3.3.1. Selection of Triphone Videos.The new speech utterance determines the target se-
quence of speech sounds, marked with phoneme labels. We would like to find a sequence of
triphone videos from our database that matches this new speech utterance. For each triphone
in the new utterance, our goal is to find a video example with exactly the transition we need,
and with lip shapes that match the lip shapes in neighboring triphone videos. Since this goal
often is not attainable, we compromise by a choosing a sequence of clips that approximates
the desired transitions and shape continuity.

Given a triphone in the new speech utterance, we compute a matching distance to each
triphone in the video database. The matching metric has two terms: thephoneme-context
distance,Dp, and thedistance between lip shapesin overlapping visual triphones,Ds. The
total error is

error= �Dp + (1� �)Ds

where the weight,�, is a constant that trades off the two factors.
The phoneme-context distance,Dp, is based on categorical distances between phoneme

categories and between viseme classes. Since Video Rewrite does not need to create a new
soundtrack (it needs only a new video track), we can cluster phonemes into viseme classes,
based on their visual appearance.

We use 26 viseme classes. Ten are consonant classes: /CH/, /JH/, /SH/, /ZH/; /K/, /G/,
/N/, /L/; /T/, /D/, /S/, /Z/; /P/, /B/, /M/; /F/, /V/; /TH/, /DH/; /W/, /R/; /HH/; /Y/; and /NG/.
Fifteen are vowel classes: one each for /EH/, /EY/, /ER/, /UH/, /AA/, /AO/, /AW/, /AY/,
/UW/, /OW/, /OY/, /IY/, /IH/, /AE/, /AH/. One class is for silence, /SIL/.

The phoneme-context distance,Dp, is the weighted sum of phoneme distances between
the target phonemes and the video-model phonemes within the context of the triphone. If the
phonemic categories are the same (for example, /P/ and /P/), then this distance is 0. If they
are in different viseme classes (/P/ and /IY/), then the distance is 1. If they are in different
phonemic categories but are in the same viseme class (/P/ and /B/), then the distance is a value
between 0 and 1. The intraclass distances are derived from published confusion matrices [28].

InDp, the center phoneme of the triphone has the largest weight, and the weights decrease
smoothly from that center weight. Although the video model stores only triphone images, we
consider the triphone’s original context when picking the best-fitting sequence. In current
animations, this context covers the triphone itself, plus one phoneme on either side.

The second term,Ds, measures how closely the mouth contours match in overlapping
segments of adjacent triphone videos. In synthesizing the mouth shapes for “teapot,” we
want the contours for the /IY/ and /P/ in the lip sequence used for /T–IY–P/ to match the
contours for the /IY/ and /P/ in the sequence used for /IY–P–AA/. We measure this similarity
by computing the Euclidean distance, frame by frame, between four-element feature vectors
containing the overall lip width, overall lip height, inner lip height, and height of visible teeth.

The lip-shape distance (Ds) between two triphone videos is minimized with the correct
time alignment. For example, consider the overlapping contours for the /P/ in /T–IY–P/ and
/IY–P–AA/. The /P/ phoneme includes both a silence, when the lips remain pressed together,
and an audible release, when the lips move rapidly apart. The durations of the initial silences
within the /P/ phoneme may be different. The phoneme labels do not provide us with this level
of detailed timing. Yet, if the silence durations are different, the lip-shape distance for two
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otherwise-well-matched videos will be large. This problem is exacerbated by imprecision in
the HMM phonemic labels.

We want to find the temporal overlap between neighboring triphones that maximizes the
similarity between the two lip shapes. We shift the two triphones relative to each other to find
the best temporal offset and duration. We then use this optimal overlap both in computing the
lip-shape distance,Ds, and in cross-fading the triphone videos during the stitching step. The
optimal overlap is the one that minimizesDs while maintaining a minimum-allowed overlap.

Since the fitness measure for each triphone segment depends on that segment’s neighbors
in both directions, we select the sequence of triphone segments using dynamic programming
over the entire utterance. This procedure ensures the selection of the optimal segments.

3.3.2. Stitching It Together.Video Rewrite produces the final video by stitching together
the appropriate entries from the video database. At this point, we have already selected the
sequence of triphone videos that most closely matches the target audio. We need to align the
overlapping lip images temporally. This internally time-aligned sequence of videos is then
time aligned to the new speech utterance. Finally, the resulting sequences of lip images are
spatially aligned and are stitched into the background face. We describe each step in turn.

We have a sequence of triphone videos that we must combine to form a new mouth movie.
In combining the videos, we want to maintain the dynamics of the phonemes and their tran-
sitions. We need to time align the triphone videos carefully before blending them, because
otherwise the mouth will appear to flutter open and closed inappropriately. We align the tri-
phone videos by choosing a portion of the overlapping triphones where the two lips shapes
are as similar as possible. We make this choice when we evaluateDs to choose the sequence
of triphone videos (Section 3.3.1). We use the overlap duration and shift that provide the
minimum value ofDs for the given videos.

We now have a self-consistent temporal alignment for the triphone videos. We have
the correct articulatory motions, in the correct order to match the target utterance, but these
articulations are not yet time aligned with the target utterance. We align the lip motions with
the target utterance by comparing the corresponding phoneme transcripts. The starting time
of the center phoneme in the triphone sequence is aligned with the corresponding label in the
target transcript. The triphone videos are then stretched or compressed such that they fit the
time needed between the phoneme boundaries in the target utterance.

The remaining task is to stitch the triphone videos into the background sequence. The
correctness of the facial alignment is critical to the success of the recombination. The lips
and head are constantly moving in the triphone and background footage. Yet, we need to align
them all so that the new mouth is firmly planted on the face. Any error in spatial alignment
causes the mouth to jitter relative to the face—an extremely disturbing effect. We again use
the mask from Figure 7 to help us find the optimal global transform to register the faces from
the triphone videos with the background face. The combined transforms from the mouth
and background images to the template face (Section 3.2.1) give our starting estimate in this
search. Re-estimating the global transform by directly matching the triphone images to the
background improves the accuracy of the mapping.

We use a replacement mask (Figure 3.3.2) to specify which portions of the final video
come from the triphone images and which come from the background video. This replace-
ment mask warps to fit the new mouth shape in the triphone image and to fit the jaw shape in
the background image.

Local deformations are required to stitch the shape of the mouth and jaw line correctly.
These two shapes are handled differently. The mouth’s shape is completely determined by
the triphone images. The only changes made to these mouth shapes are imposed to align
the mouths within the overlapping triphone images: The lip shapes are linearly cross-faded
between the shapes in the overlapping segments of the triphone videos.
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FIGURE 8. Facial fad-
ing mask.

This mask determines which portions
of the final video frames come from
the background frame, and which come
from the triphone database. The mask
should be large enough to include the
mouth and chin. These images show the
replacement mask applied to a triphone
image, and its inverse applied to a back-
ground image. The mask warps accord-
ing to the mouth and chin motions.

The jaw’s shape, on the other hand, is a combination of the background jaw line and the
two triphone jaw lines. Near the ears, we want to preserve the background video’s jaw line.
At the center of the jaw line (the chin), the shape and position are determined completely by
what the mouth is doing. The final image of the jaw must join smoothly together the motion
of the chin with the motion near the ears. Therefore, we vary smoothly the weighting of the
background and triphone shapes as we move along the jawline from the chin toward the ears.

The final stitching process is a three-way tradeoff in shape and texture among the fade-out
lip image, the fade-in lip image, and the background image. As we move from phoneme to
phoneme, the relative weights of the mouth shapes associated with the overlapping triphone-
video images are changed. Within each frame, we vary spatially the relative weighting of the
jaw shapes contributed by the background image and of the triphone-video images.

The derived fiduciary positions are used as control points in morphing. All morphs are
done with the Beier-Neely algorithm [3]. For each frame of the output image, we need to
warp four images: the two triphones, the replacement mask, and the background face. The
warping is straightforward, since we generate high-quality control points automatically using
the eigenpoints algorithm.

3.4. Results from Video Rewrite

We have applied Video Rewrite to several different training databases. We recorded one video
dataset specifically for our evaluations. Section 3.4.1 describes the methods that we used to
collect these data and to create lip-sync videos, as well as our evaluation of the resulting
videos. More details about our method and our evaluation for this experiment are given
elsewhere [5].

We also used old footage of John F. Kennedy to evaluate the system’s performance on ex-
tremely small databases. We summarize the results from these experiments in Section 3.4.2.
Details about our method and our evaluation of this specific experiment were reported else-
where [6].

3.4.1. Reanimation of High-Quality Footage.We recorded about 8 minutes of video, con-
taining 109 sentences, of a woman narrating a fairy tale. The subject was also asked to wear
a hat during the filming. We use this landmark to provide a quantitative evaluation of our
global alignment. The hat is strictly outside all our alignment masks and our eigenpoints
models. Thus, having the subject wear the hat does not affect the magnitude or type of errors
that we expect to see in the animations—it simply provides us with a reference marker for
the position and movement of her head.

To create a video model, we trained the system on still-head footage. We hand annotated
only 26 images (of 14,218 images total; about 0.2 percent). Video Rewrite then constructed
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FIGURE 9. Examples of synthesized output frames.
These frames show the high quality of Video Rewrite’s output after triphone segments have been
stitched into different background video frames.

and annotated the video model automatically with just under 3500 triphone videos, using
HMM labeling of triphones and eigenpoint labeling of facial contours.

Video Rewrite was then given the target sentence, and was asked to construct the cor-
responding image sequence. We evaluated the output footage both qualitatively and quanti-
tatively. Our qualitative evaluation was done informally, by a panel of observers; only the
(global) spatial registration was evaluated quantitatively. Because the narrator’s hat moved
rigidly with her upper head, we were able to measure quantitatively our global-registration
error on this footage.

Examples of our output footage can be viewed at

http : ==www:interval:com=papers=1997 � 012=

The top row of Figure 9 shows example frames, extracted from these videos. This section
describes our evaluation criteria and results.

� There are visible timing errors in less than 1 percent of the phonemes. These tim-
ing errors all occur during plosives and stops. There are no visible artifacts due to
synchronization errors between triphone videos.

� No registration errors are visible. In quantitative terms, using the hat registration as a
metric, the mean, median, and maximum errors in the still-head videos were 0.6, 0.5,
and 1.2 pixels (standard deviation 0.3); those in the moving-head videos were 1.0, 1.0,
and 2.0 pixels (standard deviation 0.4). For comparison, the face covers approximately
85 X 120 pixels.

� We did not observe unnatural out-of-plane distortions of the lips. Such distortion
would be caused by mistakes in the estimate of out-of-plane facial curvature. How-
ever, the out-of-plane motions within our database and our background movies were
fairly limited. The JFK footage, discussed in Section 3.4.2, provided a better test for
this type of error.

� The illumination matching is accurate. Without illumination correction, we see arti-
facts in some of the moving-head videos; for example, when the narrator looked down,
the lighting on her face changed significantly. These artifacts disappear with adaptive
illumination correction [7].
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� Artifacts are occasionally visible near the outer edges of the jaw and neck. These
artifacts are due to incorrect warping of the background image.

� No unnatural-looking articulation artifacts could be traced to triphone-sequence re-
placement. Video Rewrite approximated about 31 percent of triphone sequences using
other video sequences. Even so, none of the visible artifacts seemed to correlate with
these replacements.

� Despite the foregoing occasional artifacts, the overall quality of the final video was
judged informally to be excellent.

3.4.2. Reanimation of Historic Footage.We also applied Video Rewrite to public-domain
footage of John F. Kennedy. For this application, we digitized 2 minutes (1157 triphones)
of Kennedy speaking during the Cuban missile crisis. Forty-five seconds of this footage are
from a close-up camera, placed about 30 degrees to Kennedy’s left. The remaining images
are medium-range shots from the same side. The size ratio is approximately 5:3 between the
close-up and medium-range shots. During the footage, Kennedy moves his head about 20
degrees vertically, looking down to read his speech from notes on his desk and then looking
up to make eye contact with a center camera (film from which we do not have).

We used this video model to synthesize new animations of Kennedy saying, for example,
“Read my lips” and “I never met Forrest Gump.” These animations combine the footage from
both camera shots (close-up and medium-range) and from all head positions. The resulting
videos are shown on

http : ==www:interval:com=papers=1997 � 012=

The bottom row of Figure 9 shows example frames, extracted from these videos.
We evaluated our Kennedy results qualitatively along the following dimensions: syn-

chronization between lip videos and between the composite lips and the utterance; spatial
registration between the lip videos and between the composite lips and the background head;
quality of the illumination matching between the lips and the background head; visibility of
the chosen fading-mask extent and of the background warping; naturalness of the composited
articulation; and the overall quality of the video.

� There are visible timing errors in about 1 percent of the phonemes. These timing errors
all occur during plosives and stops. There are no visible artifacts due to synchroniza-
tion errors between triphone videos.

� The lips are distorted unnaturally in 8 percent of the output frames. This distortion is
caused by mistakes in the estimate of out-of-plane facial curvature. We see no other
errors in the alignment between the lips and the background face.

� The illumination matching is accurate. There are no visible artifacts from illumination
mismatches.

� The fading mask occasionally includes nonfacial regions (for example, the flag behind
Kennedy or the President’s shirt collar). This error results in visible artifacts in 4
percent of the output frames, when lips from one head position are warped into another
head position.

� Unnatural-looking articulation results occasionally from replacement of a desired (but
unavailable) triphone sequence. In our experiments with the Kennedy images, this type
of replacement occurs on 94 percent of the triphone videos. Of those replacements, 4
percent were judged informally to be unnatural looking.

� Despite the foregoing occasional artifacts, the overall quality of the final video was
judged informally to be very good.
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4. Conclusions

We have reviewed two techniques for modifying audible and visual speech. These tools and
others that change the wording [26], the speaker’s identity [2, 35], the emotional content,
and the emphasis of audible and visual speech are particularly useful as we rely more on
computer-mediated speech communication between people. They, as well as speech recogni-
tion and speaker identification, will be needed for speech-based human-computer interfaces.
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