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1. Introduction

Large classes of signals exhibit a very irregular behavior. In the most complicated situations
this irregular behavior may follow different regimes, and can switch from one regime to an-
other almost instantaneously. This is obviously the case for recordings of speech signals;
precise recordings of turbulence data (which became available at the beginning of the 80’s)
show that turbulence also falls in this category. Such signals cannot be modeled by standard
stationary increments processes, such as Fractional Brownian Motion (or related Gaussian
processes) for instance. The techniques of multifractal signal analysis have been specifically
designed to analyze such behavior. Initially developed in the mid 80’s in the context of tur-
bulence analysis, they were applied successfully to a large range of signals, including traffic
data (cars and internet), stock market prices, speech signals, texture analysis, etc. We give
an overview of the mathematical tools that were developed for that purpose, and we present
some of the most successful applications. We start by introducing some simple mathematical
tools that will be useful to model the above notions.

First, what is meant by pointwise regularity? It is a way to quantify, by using a positive
real numbery, the fact that the graph of a function has a certain smoothness at acpoint

The lowest possible level of regularity é®ntinuity. A function £ is continuous at:, if
|F(z)—F(z0)| — 0asxz — xo; continuity corresponds to a regularity index= 0. Similarly,
F is differentiable if there exists a linear functiéhsuch that F'(z) — P(x — zy)| — 0 faster
than|x — x| asz — xy; this corresponds to a regularity index= 1.

The following definition is a direct generalization of these two particular cases.

Let o be a positive real number ang € IR™; a functionF' : R™ — IR is C%(xy) if
there exists a polynomid? of degree less tham such that

Q) |F(z) — P(x — x)| < Clz — 20|*

Note that the constant term &f(x — x,) is F(x,), and if F' is Cl®) in a neighborhood of
xg, the polynomialP is exactly the Taylor expansion &f atx, of ordera. Nonetheless, (1)
can hold for a largex even if ' is not differentiable in a neighborhood of (consider, for
instance, the “chirp’z” sin(z~") in a neighborhood of for a largen).

The Holder exponenti(x,) is the supremum of allv such that (1) holds. Note that
this Holder exponent is a function which is defined point by point and describes the local
variations of the irregularity of the functiof.

We are interested in analyzing signals whogsedei' exponent may widely change from
point to point. This instability usually makes the task of determining tbh&lét exponent
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h(x) very difficult numerically. In some cases the determination of tider exponent is
either impossible or irrelevant. This is the case for multifractal functions, wheredldeH"
exponent jumps from point to point. In that case the points with a givadét €xponent form
fractal sets, and one is not interested in determining the exact value obttertkponent

at every point but rather in extracting some relevant information concerning the size and
geometry of the singularities. The relevant mathematical tool studied in this context is the
spectrum of singularitied(«) (the functiond(«) associates to each positiwghe Hausdorff
dimension of the setl, of the pointsz whereh(z) = «a). Examples of such functions
include plots of random walks, interfaces developing in reaction-limited growth processes,
or turbulent velocity signals at inertial range (see [3]). The most important example where
one would like to determine a spectrum of singularities is probably the velocity of fully
developed turbulence. The reason is that turbulent flows are not spatially homogeneous: the
irregularity of the velocity seems to differ widely from point to point. This phenomenon,
called “intermittency”, suggests that the determination of the spectrum of singularities of the
velocity of the fluid might be a nontrivial function, universak(, independent of boundary
conditions in the limit of small viscosity), and thus would yield important information on the
nature of turbulence.

Wavelet analysis has proved a powerful tool to study such classes of signals, and we
will start by investigating the relationship between the pointwise regularity of a funétion
and decay estimates of its wavelet transform; we will state this relationship in Section 2. In
Sections 3 and 4 we deal with a first application of this wavelet criterium: two solutions are
given to the problem of constructing a function with a givenld€i exponent. This problem
was first raised in the context of speech simulation (see [8]): a speech signal seems to have a
Holder exponent with sharp fluctuations (especially in consons). Therefore, storirgdesH"
regularity might be an efficient way to compress the relevant information and could open the
way to automatic speech synthesis. The first construction, in Section 3, is deterministic.
It allows construction of the most generabldér exponents. This generality must be paid
for: functions constructed through the procedure that we describe are extremely peculiar
and could not be used in any realistic simulation. The second construction, in Section 4, is
probabilistic: we construct a ‘multifractional Brownian motion’ which has near the point
the same features as a fractional Brownian motion of okdey. This construction is more
suited to applications, but the range oblHEr exponents that can be reached this way is
smaller. In particulary(z) must be continuous.

In Section 5 we give some general results concerning multifractal functions. In particular,
we show how wavelet methods give information concerning the problem of the validity of
the multifractal formalism; we show that one of its limitations comes from the presence of
oscillating singularities (‘chirps’). We study these chirps in Section 6.

Section 7 is devoted to the study of functions that appear in many fields of applications:
the functions which have a few non-vanishing wavelet coefficients (which we call, for this
purposelacunary wavelet seri@gsWe show that, generically, these functions are multifractal
and exhibit chirps. In Section 8 we considely processes. Advy processX; (¢t > 0)
valued inIR? is, by definition, a stochastic process with stationary independent increments:
Xi+s — Xy is independent of théX,)o<,<; and has the same law a&5. The very general
definition of these processes makes them useful for modeling purposes in many fields, such
as the study of stock prices. We show that they are related with lacunary wavelet series, and
that they are also multifractal.
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2. Pointwise regularity and wavelet coefficients

Let F be a function defined ofR. One associates with' a function of two variables, its
wavelet transform defined in the “time-scale” open half plane0, b € IR by

@ Clab) = / Pty (=Dt

a a

(herey is smooth, compactly supported, and has a vanishing integral).

Many properties of a functiof’ can be translated into simple size estimates of its wavelet
transform. Ify is CX and hagk’ vanishing moments;’ belongs to the Hider space&™ (IR)
if (1) holds for everyz,, the constan€ being independent af,. F € C*(RR) (for o < K)
if and only if

|C(a,b)| < Ca”.

If a is small, (2) takes into account only the valuego€lose tob; thus it is not surprising
that local properties of a function can be studied via the wavelet transform. This is, for
instance, the case for pointwise regularity.

The following proposition [13] relates pointwise regularity with decay conditions of the
wavelet coefficients.

PROPOSITIONL. Let F : IR — IR be a bounded function. K is C"(x),

h
3) C(a,b)| < Cat (1 + M) |

a

Conversely, suppose that there exists 0 such thatF' € C<(IR%). If (3) holds, there
exists a polynomiaP of degree at most] such that, iflz — zo| < 1/2,

|[F(2) = P(z — x0)| < Clo — @o]"[log(|z — zo])].

In order to deduce from this proposition a characterization of thielét exponent, let us
introduce some appropriate notations. The first is a weak form abthetation of Landau,
and the second expresses the fact that two functions are of the same order of magnitude,
disregarding “logarithmic corrections”.

DEFINITION 1. If F andG are two functionsF' = O(G) if

andF ~ G if
InlogIFW__
log |G|

Let ~ be the Hblder exponent of ™ atz,. The following corollary is a direct consequence
of the definition of the dlder exponent and of Proposition 1.

li

COROLLARY 1. Suppose thaf’ ¢ C¢(IR?) for ane > 0. The Hlder exponent of " at
xo IS h if and only if the following two conditions hold:

e In the neighborhood dfa, b) = (0, z)

(4) |C(a,b)] = Oa" + [b — w|").
e There exists a sequen¢e,, b,) — (0, z,) satisfying
(5) |C (@, by)| ~ @ + b, — 20"

We will call such a sequende.,,, b,,) aminimizing sequencéor F atx.
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3. Functions with prescribed Holder regularity

The first problem we consider is the construction of functions with a givaldét exponent.
This problem was first raised in the context of speech simulation (see [8]). A speech signal
has a Hblder exponent with sharp fluctuations (especially in consons), hence the idea that a
very efficient way to keep the relevant features of such a signal would be to storeldlsrH "
exponent rather than sampled values of the signal itself.

We sketch the proof of the following theorem which completely solves, in a constructive
way, the problem of determining which functions arel¢r exponents.

THEOREM 1. A nonnegative functioh(z) is the Holder exponent of a continuous func-
tion F' if and only if it can be written as a lim inf of a sequence of continuous functions.

The important point in the proof is the explicit wavelet construction of a fundtievhich
has a prescribed éider exponenk(z). Whenh(x) has a minimal ldlder regularity, a more
natural probabilistic construction is supplied by the multifractional Brownian motion that we
will study in the sequel.

Proof of Theorem 1We let\ (= A(j,k)) = k277 andA,(f) = |f(z + h) — f(z)|. If
0<h(z) <1,

h(z) =liminf  inf log(An(f) +277)
j—oo  2-i<|h[<2.277 log h
so thath(z) is a lim inf of a sequence of continuous functions. The fact that this property
also holds without the assumptidfz) < 1 has been observed by P. Andersen [1].
Let us now prove the converse result. We suppose/hal is a lim inf of a sequence
of continuous functiong,, (x). The problem is local, so that we can suppose thatthare
uniformly continuous. Thus, there exist functions-, such that

|V (z) = Bu(z)| < C/n.

Let A(n) = n + sup |Vy,(2)].
Since it is difficult to impose the size of a wavelet transform at a given point, it is easier
to use arorthogonal wavelet basis

Yik(e) =@z —k), j ke

where the wavelet is compactly supported, §%, and has a vanishing integral ahdfirst
vanishing moments, for a large enoufgh(see [2]). We will construct the functiof' by
defining its wavelet coefficients on an orthonormal wavelet basis. The wavelet coefficients of
F are defined as follows. If is one of the numberisi(n)],

Cix = inf(gfj/logj, 2*]'%()\))
otherwise we tak&’;, = 0. Let h(x) be the Hblder exponent of" atz. The direct part
of Proposition 1 adapts immediately to the discrete case of orthonormal wavelets (with the
change of notation = 277, b = k277) and obviously implies that
R(z) < = liminf  5,(}\)

T 27 270D

Y

< liminfy,(z) + 277 A(n) = lim inf (3, (z)

so thath(z) < f(x). In order to prove the converse estimate we use the second part of
Proposition 1. We have

Cin= inf(ij/logj’ 2*]'%(/\))

< inf(Q—j/logJ’, 2—j7n(93)2j\93—>\\1‘1(n))_
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Since|\ — z| < 279/(0ed)? 9ile=AA(n) < 9 for n (henceyj) large enough, and Proposition 1
implies that the ldlder exponent at is exactlylim inf v, (z). Let us now give as an example
a class of functions that areaitier exponents.

Let h(z) be a positive measurable functioniin. After perhaps redefining(x) on a set
of measure 0, we can suppose that

1
h(z) = liminf — du.
() = lim it o ) /B(m,r)o‘(“) u

Let ¢(z) be a positiveC"> function supported ifi-1, 1] of integral 1; then

h(z) = liminf o % lng(E)

n n
so thath(x) is a Holder exponent.

4. Multifractional Brownian Motion

This section describes some joint work with A. Benassi and D. Roux in [5] (note that an
alternative construction has been proposed independently in [23]). We will construct and
analyze the (one or several dimensiomal)ltifractional Brownian motionlt is a stochastic
process that also answers the question raised in the previous section: construct functions with
given Holder exponents. However, here the restriction on the possible exponents is more
severe than before. We will have to suppose thaf) satisfies a uniform Blder condition.
The definition of the multifractional Brownian motion is a straightforward extension of the
definition of the Fractional Brownian Motion of ordey except that instead of defining it by
a fractional integration of order of a white noise, we take a fractional integration of order
a(x) (formula (6) explains what we mean by that). We show how to construct a wavelet
basis which decorrelates this process (the wavelets are no laAgethogonal but have the
same localization and smoothness properties as usual wavelets: theygasdettesn the
sense given by Yves Meyer in [25]). This analysis immediately yields the local regularity
and scaling properties of the multifractional Brownian motion. In particular, it implies that
in the neighborhood of a given point it is a locally asymptotically self-similar process$
ordera(z).

A processX is said to be self-similar of order if

(6) Vr >0, Law { r X (rz),» € RY} = Law {X(z),r € R%}.

For instance, theéractional Brownian Motion of ordet: is self-similar (of ordery). This
exact scaling law can hold only for very specific processes. In order to have a more flexible
notion, we define the renormalisation operathfs . by

T0o,r

RS, X () = (X (w0 + ) — X(x0)).

A processX is locally asymptotically self-similar (L.A.S.S.) of order € (0, 1) if there
exists some non trivial limitin law fofzg, . X (asr — o).

DEFINITION 2. Let a(z) be a function defined oR? such thatd < a(z) < 1. Let
A = sup a(r) and assume that(z) € C4(IR%). The multifractional Brownian motion of
order «(x) is defined by

eim.§ -1

(7) B, (z) = de(ﬁ)-

Observe that this definition is a straightforward extension of the usual Fractional Brown-
ian Motion whenx(z) is constant.
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One easily checks that the functiéh: IR — IR defined by
1 —cos?z.n
20\
C(x) = / [1|d+2e(@) dn
belongs taC4(IR*) and

E(|Ba(z 4 h) — Bo(x)[?) = C?(2)|h]2*® + o(h).

This function will be needed in the study of the local modulus of continuity of the multi-
fractional Brownian motion. Let us now show how to obtain a wavelet decomposition of
B,. We use the following decomposition of the white noise on the Fourier transforms of an
orthonormal wavelet basis

dW (&) = &a(€)de

where thet, are i.i.d. centered Gaussians and the wavelets are now indexed by the points
A= k277, Let

eix.f -1
(8) w(r) = W%(Odf
so that
) Bo(z) = Z{Aaa(x)-

Thew, are “vaguelettes’i.e., thew, and their partial derivatives satisfy the same decay
estimates as the, (see [9]).

The local regularity of the multifractional Brownian motion is given by the following
theorem, which shows that, indeed, the functdm) is the Holder exponent oB,,.

THEOREM 2. Let F be a bounded open set. Define

ap = inf a(z) Cg= sup ¢(x)
zelk z€a~(ag)NE

Law of the uniform modulusP a.e. .

(20) lim sup [Ba(®) — Baly)| = COpVd

z—y|—0 [T — y|*2\/2log |z — Y|

Law of the iterated logarithm®P a.e. . Vy € R,

Ba - Ba
(11) lim sup |Ba(2) W]
t—y |x—y|a(y)\/210glog|x—y|

= C(y).

Furthermore,B,, is asymptotically self similar of order(z,) at x; i.e.,

12) lim Law{ Bal(wo + put) — Ba(o)

p—0+ pa(l"O)

exists for every, and is not trivial.

,uE]Rd}

The idea of the proof is to use the vaguelette decomposition (9), which is reminiscent, for
instance, of the decomposition of the Brownian motion in the Schauder basis, and to use the
decorrelation of the random variables and the localization ofthe

In [5] processes that behave locally like fractional Brownian motions are studied. Their
local characteristics may change from point to point so that they are fitted to the modeling of
textures that are not uniform. In [4], methods for the identification of these local parameters
are proposed. These methods can be applied when only one sample path of the process is
known.
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5. Multifractal functions

Standard examples of functions whoseldEr exponent changes from point to point are sup-
plied by multifractal functions The relevant mathematical notion that one tries to determine
when studying a multifractal functiof' is thespectrum of singularitiesof F', which is the
functiond(h) defined for eaclh > 0 as follows:d(h) is the Hausdorff dimension of the set
of pointsz, where the Hider exponent of" is h. A multifractal function has a “nontriv-
ial” spectrum of singularities. Usually(h) will be defined and non-constant on an interval
[hmina hmax] .

The examples of Sections 3 and 4, though interesting for modeling purposes in signal
analysis, do not necessarily yield multifractal functions. As regards multifractal signals, it is
unrealistic to determine theirdfder regularity at every point since it is usually a function that
jumps everywhere. One is more interested in a qualitative approachp determine how
large is the set of points which have a giveal#r exponent Thus one wants to determine
the spectrum of singularities of the signal. Frisch and Parisi introduced, in the context of fully
developed turbulence, a formula which allows one to compute the spectrum of singularities of
a signal by a Legendre transform of some numerically easily computable function (see [11]).
Alternative formulas were proposed by Arneodo, Bacry and Muzy (see [3]). We will discuss
the validity of these so-calledhultifractal formalisms for functions several steps.

First let us mention that there exist a few mathematical examples whereotterkx-
ponent can be analytically determined and the validity of the multifractal formalism can be
tested. These examples include the class of self-similar functions (see [18] and [6]), a humber
of specific examples which belong to the history of mathematics, (see [17], and references
therein), and also some classes of stochastic processes, for instangeprbcesses (see
Section 8). A careful analysis of these meaningful examples gives good insight about the
conditions a signal must satisfy so that the multifractal formalism is valid. Basically there
must exist some self-similarity (deterministic or statistic), either of the function or of its
wavelet transform. Note that in most of these examples thieét exponent is determined
by a wavelet analysis of the function.

One of our interests is also to understand the reasons why the multifractal formalism may
fail. A well-known reason is the “phase transition” phenomenon that will be explained below,
but strong local oscillations of the signal can also be a more subtle cause of failure. Such
strong oscillations appear when the signal has at many points a chirp-like behavior. Chirps
are functions that behave like* sin(1/27) at the origin. This phenomenon had escaped
attention because the intuition concerning the multifractal formalism for functions was based
on corresponding previous results concerning the multifractal formalism for measures, and
of course positive measures, by definition, have no oscillations. Thus the considerations we
will develop are relevant for at least two reasons:

e They show that problems posed by the multifractal formalism are of a very different
nature for functions and measures.

e They give some insight about possible generalizations of the multifractal formalism
for functions that would take into account this oscillatory behavior.

Such generalizations will be presented in Section 8.

If one comes back to the definition of the spectrum of singularities, it is impossible to
compute numerically the spectrum of a signal since it involves the successive determination
of several intricate limits, and a blind application of the formula giving the definition of the
Hausdorff dimension would yield enormous, totally unstable calculations. The only method
is to find some “reasonable” assumptions under which the spectrum could be derived using
only averaged quantities (which should be numerically stable) extracted from the signal. Such
formulas, referred to as the multifractal formalism, were inferred by physicists. Let us now



118 S. Jaffard / Mathematical Tools for Multifractal Signal Processing

state the formulas that are based on a wavelet analysis.

The Wavelet Transform Integralethod: let

Za.o) = [ 1Clab)pd

if Z(a,q) ~ a"9,
(13) d(a) = inf (g —n(q) +m)

The Wavelet Transform Maxinmaethod requires first the computation of

Z(a,q) =) sup |C(d,0)|"
I} (bya')et

where/ is a line of maxima of the wavelet transform considered«f], and sup means
(b,a')et

that the supremum is taken @, ') on this line of maxima (so that < a). If Z(a,q) ~
a’@, then

(14) d(a) = inf(gh — 0(q))-

Numerically, according to [3], the best method seems to be the last one, probably be-
cause the restriction of the computation to the maxima insures that small errors are taken into
account less (because, at the maxima, they are relatively less important). More generally,
methods that involve the wavelet transform are numerically more stable, probably because
they involve only averaged quantities and not the direct values of the function.

The multifractal formalism may be surprising at first sight because it relates pointwise
behavior to global estimates. Before giving some mathematical justifications for it, it may be
enlightening to give the heuristic argument from which it is derived. Though this argument
cannot be transformed into a correct mathematical proof, it shows at least why these formulas
can be expected to hold, and a careful study of its implicit assumptions shows for which type
of functions it cannot hold.

Let us calculate the contribution of theoldér singularities of ordet to the integral

/m C(a, b)|“db.

Near a singularity of ordett we have, in a small box of size |C(a,b)|? ~ a®?, because
Proposition 1 basically means thaffifis C*(z,) and not smoother, then the order of magni-
tude of its wavelet transform in the cofle— zy| < a is abouta®. If the dimension of these
singularities isd(«), it means that there are abaut?® such boxes, each of voluna&', so
that the total contribution to the integral i§?*™ %), The real order of magnitude of the
integral should be given by the largest contribution, so that

(15) n(g) = inf(ag +m — d(a)).

This formula is not the one we are looking for, since we kngw) and we wanti(«).
However, if (15) holds and i is concave (we will see that in general this assumption need not
be verified, although in many cases it ig)q) is recovered by an inverse Legendre transform
formula which yields (13). Of course, ifis not concave one expects (13) to yield only the
convex hull of the spectrum. This is the “phase transition” phenomenon that we mentioned
earlier.

Though (14) does not always hold, the following upper bound is valithfas a minimal
uniform Hoélder regularity (see [21]).
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PrROPOSITION2. The following upper bound holds for any functibhe C<(IR™) for
somer > 0:

(16) d(a) < inf(m —n(p) + ap).

In general (16) cannot be an equality, see [18]. The intuitive explanation is that any
criterium which is invariant after permuting the positions of the wavelet coefficients at the
same scale cannot yield the spectrum of singularities, essentially because it cannot contain the
geometrical information which is relevant in the definition of the dimension. Thus, formulas
involving these quantities can be true only in some very specific cases where we have an
a-priori knowledge of this geometry, which is clearly the case for self-similar functions.

Let us now try to understand reasons for the failure of the multifractal formalism. The
main argument in the heuristic calculation that justified it is that we interpreted Proposition 1
as meaning that it is C*(x) and not smoother, then the order of magnitude of its wavelet
transform in the coné — z,| < a is abouta®. This holds for cusp-like singularities like
|z — xo|* but not for “chirp-like” singularities, which have a very small wavelet transform
in the cone. We will come back to this problem and study chirp behaviors carefully in the
following section. We will develop in Section 8 a multifractal formalism which takes into
account these oscillatory behaviors, but we first need to develop some mathematical tools
that allow the capture of these chirps.

6. Chirps and oscillating singularities

This section describes joint work with Y. Meyer, A. Arneodo, E. Bacry and J-F. Muzy. Up to
now we described the singularity ¢fx) at z, only by the Hlder exponent(z,), so that,
if h(zo) < 1, we looked for the order of magnitude gf(xz) — f(xy)| whenz tends toz,,
without taking into account the oscillations pfz) — f(x,). We also want to investigate very
strong oscillatory behavior (chirps of the forrfi sin(1/2%)) and show that this behavior can
be characterized by simple conditions on the wavelet transform.

First we discuss the mathematical notionostillating singularity(or chirp). There is
general agreement on an informal definition. A chirp of typg3) atx, should oscillate as

1

17) f(x) = |v — xo|* Sin(m

)

in the neighborhood of,. Hereh is the Hilder exponent of at x,, and measures the
speed at which the oscillations pile up negrone can relat@ to the speed of divergence of
the instantaneous frequency). In signal analysis, this notion covers functions inktzse
taneous frequencincreases fast at some time (see [27]). A remarkable property of (17) is
that, after each integration, theoldér exponent of the primitive at, is increased by + 3
and notl as could be expected. This remark is the starting point of the definition of chirps
given by Yves Meyer (see [21], for instance). We will discuss the mathematical definition
of an oscillating singularity. We will actually use a slightly different definition, which has
the additional advantage of being stable with respect to the addition of “smooth noise”, a
feature which is mandatory for using this notion in signal processing. Our definition is based
on the computation of pointwiseditier exponents. We will thus prove some general results
concerning tlder exponents. This will enable us to associate to any funétiolR? — IR
two oscillating singularity exponentg, ) at every pointz,.
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6.1. Oscillating singularity exponents

The choice of the definition we use is based on the following remark BLe¢ a Brownian
motion and consider the function

(18) C(z) = z'3sin(1/x) + B(x).

The strongest singularity at 0 is the chirp/® sin(1/2), and one actually observes this
oscillatory behavior after magnifying the graph sufficiently near the origin. But, after one in-
tegration, the random term becomes dominant, and the oscillatory behavior disappears. These
oscillations, which do not exist in the primitive, should be reflected in the chirp exponents.

Let us now show how we can introduce a definitionostillating singularitieswhich
agrees with the definition of a chirp for functions such as (17) and which has the required
stability properties with respect to the addition of “smooth noise”. If

(19) F(a) = = a0/ g(7——=) + Ol = ")

— |
whereh’ > h, the first term describes the local behaviorfohearz,. In that case, we
would like to say that the type of oscillating singularityaatis (5, 3), i.e., the oscillation
of F' should be the oscillation of the lowest order term of its expansion. Clearly, we need
to require thaty has one vanishing moment. After one integration, the main term of the
primitive of F' may be the remaining term, which@¥ |z — 2,|**'). This last remark shows
that, in sharp contrast with the definition of chirps given in [21], the oscillation expghent
of an oscillating singularity should not be determined using a large number of integrations,
or even one integration.
Let h'(z,) denote the ldider exponent of the fractional primitive of ordeat z, of the
function F defined by (19). More precisely, if is a bounded function, we denote bY(x)
the Holder exponent at, of the function

(20) F, = (Id = A)"'*(¢F).

Here ¢ is a C> compactly supported function satisfyiggz,) = 1, and the operator
(Id — A)~'/? is the convolution operator which amounts to multiplying the Fourier transform
of the function with(1 + |£]?) /2. If one performs a fractional integration of ordesmall
enoughj.e., such that

(21) h+(1+p8)t<h +t,

thenh!(zy) = h + (1 + 3)t (hereh, b’ andj are the exponents used in 19). We see that
the gain of pointwise Hider regularity at:, after a fractional integration of very small order
tis (1 + )t. One can actually show that the function> h'(z,) is concave, so that its right
derivative exists at 0. Hence we have the following definition for exponents of oscillating
singularities.

DEFINITION 3. Let F : IRY — TR be a bounded function. The oscillating singularity
exponents of" at a pointz, are defined by
- 1> .
t=0

@2) (1.9) = (o), 1o

These exponents belong [ty +o00] x [0, +0c]. Note that, ifh!(xy) = +oo the exponent
A is not defined.

Definition 3 shows that the exponent of oscillating singularity is defined througjtds
exponents. It should therefore be computable using the wavelet transform, as a consequence
of Corollary 1. The following proposition gives a characterization of the oscillating singular-
ity exponents at;, of a functionF' € C*. Itis a direct consequence of the previous results.
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PROPOSITIONS. LetF € C¢(IR%) for somer > 0. The oscillating singularity exponents
atz, are (h, 3) if and only if the wavelet transform @f satisfies the following conditions:

e |C(a,b)| = O(a" + |b — x0|") in the neighborhood dfa, b) = (0, z)
e there exists a sequenée,, b,) — (0, x¢) such that

(an + by — x0)' 1P ~ a,
(23) 1Can, )| ~ -+ by — 0]

e 3 is the smallest number such that (23) holds.

We denote by, s the set of points where the oscillating singularity exponents/arg),
and byd(h, #) the Hausdorff dimension aof;, 5. By definitiond(h, ) is the spectrum of
oscillating singularities

7. Lacunary wavelet series

The success of wavelet techniques in many fields of application is largely due to the follow-
ing remarkable property. Many signals, images, or mathematical functions can be accurately
represented in a wavelet basis using very few nonzero coefficients. This is the case for piece-
wise smooth signals, for the velocity of turbulent flows [3], and for solutions of nonlinear
hyperbolic equations (see [9]). The starting point of the denoising algorithm of images called
wavelet shrinkages based on the remark that, since an image composed of piecewise smooth
parts has few nonzero wavelet coefficients, a noisy image can be denoised by setting to zero
all small wavelet coefficients; this amounts to approximating the noisy image by a lacunary
wavelet series [10].

Mathematically, the fact that a function has few non-vanishing wavelet coefficients can
be formalized by stating that it belongs to Besov spdggsfor p close to zero (see [9]).

Though many signals or functions have been shown to be accurately represented by la-
cunary wavelet series, the properties of these functions have never been investigated. Our
purpose is to investigate the properties of a simple probabilistic model of such series. We
will see that, though the model is itself extremely simple, the corresponding random func-
tions have an extremely complicated local structure. Namely, they exhibit a whole range of
oscillating singularities located on random fractal sets.

The functions considered in the previous section have very few non-vanishing wavelet
coefficients. They are thus examples of lacunary wavelet series. One might believe that the
oscillating singularities are created because of the very specific position of the non-vanishing
wavelet coefficients. This is in fact not the case, as the following example will show.

Letn < 1. For eachj > 0 we choose at random and independef@ty] locations
k277 € [0,1], and the corresponding wavelet coefficiets, take the value=*/. These
choices are made independently for eacliVe set to O all other wavelet coefficients. This is
the most elementary model of random lacunary wavelet series one can think of.

In order to study theses wavelet series, we now introduce the noticmirpf exponents
which differs slightly from the definition of “oscillating singularity exponent” given in the
previous section.

DEFINITION 4. Leth > 0 and 3 > 0. A functionf € L* is a chirp of typeh, 3) at x,
if the iterated primitives =", ... f=") .. satisfy (=) ¢ CP+nB+1) ().

The following characterization of [21] holds.

PROPOSITION4. A functionf € L™ is a chirp of type(h, 3) at z, if and only if there
exists a functiom(z) € C'* in a neighborhood of,,, ande > 0, such that

fl@) =r(r—mz) + (x —20)"g+ ((x —20) ") if O0<z<e
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and
f@)=r(x—x0) + |z — xol"g- (Jo — x| ") if —e<z<0,

the functiongy, andg_ being “infinitely oscillating”, i.e., they have bounded primitives of
any order.

The following property allows one to define “chirp exponents”.

LEMMA 1. Let f € L*. If f is a chirp of typeg(h, 3) atz, with 3 > 0 and f € C" ()
for b’ > h, thenVj' < 3, f is a chirp of typg(h', ') at .

This is a straightforward consequence of Definition 4 and of the characterization given by
Proposition 1. This lemma means that the interior of the set of codples such thatf is
a chirp of type(h, 3) atz, is a rectangleh < hy, 5 < (,. We can use these two values to
define chirp exponents.

DEFINITION 5. The chirp exponents of a functighnat x, are

e h(zo) (which is the Hlder exponent at),
e 3(xy) = sup{f : 3h such thatf is a chirp of typeh, ) atz,}.

Using this definition, we naturally obtain the notion ohirp spectrum The chirp spec-
trum d(h, 3) of f is the Hausdorff dimension of the set of points wheréas the chirp
exponentsh, 3).

The reader will have noticed the difference with the notiorspéctrum of oscillating
singularitieswhich was defined in Section 6.1. The notion of oscillating singularities is
adapted to the analysis of real signals, since it is not sensitive to perturbations by smooth
noise, while the notion of chirp is adapted to mathematically defined functions. Chirps were
first discovered in a nontrivial mathematical function by Y.Meyer in [21]. He showed that the
trigonometric serie§_ n~? sin(n’z) has a dense set of chirps of expondhi, 1).

The problem of prescribing chirp exponents) andj(x) simultaneously is much harder
than prescribing the élder exponent.(z) alone, and we do not know which couples of
functions(h, 3) can be chirp exponents. Some partial results are nonetheless available:

e The functions(z) must vanish on a dense set (see [12]).
e Arbitrary coupleqh, 3) which are liminf of sequences of continuous functions can be
prescribed outside some specific dense sets of measure 0, see [20].

THEOREM 3. The lacunary wavelet seridsdefined above is almost surely a multifractal
function. Its chirp spectrum is supported by the segment

h=a(f+1) for he [a,a/n)
and on this segment
d(h, B) = n(B +1).
We won't prove this theorem here, but show how it reduces to a problem of random arcs
on the circle (see [14] for a complete proof).

For each;j denote byE; the set ofk’s such thatC;, is not vanishing. Let € [0,1].
Denote by, the interval centered @2 7 (k € E;) and of lengthe /. Let

E; = limsupj_mU[j,k if ¢6€n1),
k

G(;:ﬂEy—UE(;/ if 77<(5<1,

0'<d 0'>0

Gy=E,— |JEy, Gi=[) Es.

0'>6 0'<1
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The E5 are decreasing (if) andE,, is almost surely the whole circled is large enough
(this is a straightforward consequence of results on coverings of the circle by random arcs,
see [22]). Thus, every point of the circle belongs to one oftheThe following proposition
shows that the points that belong to one of thehave the same regularity and oscillation.

PROPOSITIONS. If z € G5, the chirp exponents df at x are
a 1
h,B)=(—=,=—1).
( 7/8) ((57 6 )
(Sketch of ) proofif = € E;, there exists an infinity of points2 7/ (k € F;) such that
|z — k27| < 27%,

so that the ldlder exponent of” at z is at mosta/§. By a similar argument, the éider
exponent of (=™ atz is at most(a + n) /4.

Conversely, ifr ¢ Ej, inside a domainz — k27| < 27% all wavelet coefficients of’
vanish forj large enough. Thus, @} is a non-vanishing wavelet coefficient,

Cip =279 = (279)/0 < | — k279 |*/7,

which yields the proposition, and the determination of the spectrum isfreduced to the
computation of the dimensions of the séts

8. A multifractal formalism for chirps

We use, as above, an orthogonal wavelet, and we chbseormalization for wavelets, so
that we write

(24) fl@) =" Cip(2z — k)

7.k
whereC;, = 2j/f(t)w(2jt — k)dt. From now on we will use the following simpler

notation: A and \’ will denote respectively the intervals ; = k277 + [0,277] and A/ p» =
k'277" 410,277, Cy will denote the coefficient’; ;, andy, will denote the wavelep (2/x —
k).

The following new functional spaces will allow us to establish this multifractal formalism.

DEFINITION 6. Letp > 0, ands, s' € IR. A functionf belongs ta0:*'(IR?) if its wavelet
coefficients satisfy

1/p
(25) sup 2% (Z sup |CX2S’J"|P> < 00.

jez — NCA
The left hand-side defines tli¥* (IR?)-seminorm.

Remarks: This definition is independent of the wavelet basis chosen, see [19]. Itis a
variation on the wavelet definition of Besov spaces, since the Besov spgcesan be
defined by the condition

1/p
sup 27/P (Z |C,\2js|p> < 00.
JEL -
We now establish, by thermodynamic arguments (similar to those advocated above), a
multifractal formalism which yieldg(h, 5) from the knowledge of the wavelet coefficients
of f. This formula is motivated by two considerations: to obtain more complete information
about the Hlder singularities of the signal and, by taking into account the “chirp-type” be-
havior explicitly in the construction of the multifractal formalism, to eliminate one cause of
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failure of the standard multifractal formalism, and therefore to obtain a formula with a wider
range of validity.
Let

- . s/p,s'/p
j—+00 log 27 - Sup {S HE0, } '

If £ has a chirp of exponents, ) atz,, its wavelet coefficients are of the order of magnitude
of k277 —x|" near the curve 7 ~ |k27 — z,|'*# and decay quickly away from this curve.
Our purpose is to estimate, for ea@h /3), the contribution of the chirps of exponelttts )

to the quantity

(26) > sup [Cy P27

AEA; A'CA

Consider a cube of size2~7 which contains a chirp of exponents, 3). The wavelet
coefficientsCy for \' C \ are negligible as long a&&7" > (277)'*5, i.e, as long ag’ <
j(1+ 3). Whenjy’ ~ j(1 + /), for some values of’,

Cxl ~ (277) ~ 27073,
so that
sup (|Cx[P2e7) ~ 27757 o gmilio=(149)9)
NCA
(as long ass’ < ph/(1 + (), otherwise the supremum is infinite). The contribution of the
chirps of exponentéh, 3) to (26) is thus

9d(h,B)i9—j(hp—(1+8)s") _ o—ij(hp—(1+B)s'~d(h,3))

When; — +oo, the main contribution is obtained for the coupte ) realizing the infimum
of hp — (1 + B)s' — d(h, 3). Hence, we have the heuristic formula

((s',p) = inf hp = (1+ B)s' = d(h, B).
If d(h, ) is a convex function, it follows that
(27) d(h, ) = inf hp = (1+ B)s' = {(s',p).

One can easily check that this formula enables the recovery of the increasing part of the
spectrum in the case of lacunary wavelet series. Obtaining the decreasing part of the spectrum
would correspond to an infimum in (27) obtained for negative values which cannot be
expected from a mathematical approach of this type (in the case of the standard multifractal
formalism, this problem already appeared, and was solved numerically by the use of the
“Wavelet Maxima Method”, see [3], or [18] for a mathematical discussion).

If one is interested only in obtaining the spectrum of singularitiés, it can be recovered
from (27). For a fixedh, we expect the value @f which gives the largest contribution to (27)
to yield the right dimensiod(/), hence we expect the spectrum of singularities to be obtained
by the formula
(28) d(h) = sup d(h, 3) = supinf (14 (3)s" 4+ hp — ((s', p).

g g P

Of course, this formula is by no means equivalent to the standard multifractal formalism,
as can be checked on the example of lacunary wavelet series.

A mathematical investigation of the range of validity of these formulas, together with
numerical algorithms, are now being worked out in collaboration with A. Arneodo, E. Bacry
and J-F. Muzy, and will be the subject of a forthcoming paper.
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9. Lévy processes

The sample paths ofdvy processes are a very simple and natural example of multifractal
functions. Up to recently only very peculiar mathematical functions were known to be mul-
tifractal. The analysis of &vy processes show that multifractality is generic in some sense.
The very general definition of these processes makes them useful for modeling purposes in
many fields, for instance finance [24].

A Levy processX, (t > 0) valued inIR? is, by definition, a stochastic process with
stationary independent incremenfs,  , — X, is independent of théX,),<,<; and has the
same law as\,;. Brownian motion and Poisson processes are examples\of pfocesses
that can be qualified asionofractal For instance, the élder exponent of the Brownian
motion is everywherd /2. These two examples are not typical. Mogivly processes are
multifractal. Furthermore, their spectrum of singularities depends precisely on the growth of
the Lévy measureear the origin. Before stating our main theorem, we need to recall some
basic definitions and results abowg\y processes.

The characteristic function of aglvyy processY, (taking values iflR?) satisfies

E(ei</\|Xt>) — efW(/\)’
where
, 1 » ,
P(A) =i(a|A) + =Q(N) + / (1 — e 4 Z<)\|$>1|x|<1) m(dx).
2 R

() is a positive quadratic form, anddx) is the Lévy measure ok, i.e., a positive measure
defined orR¢ — {0} satisfying

(29) / inf (1, |22)m(dz) < oo,

The Lévy measure is usually not integrable in the neighborhood of the origin. This is, in
particular, the case for stablely processes of indexwhich satisfy (in polar coordinates)

m(dr,df) = r~*"'drv(df)

wherev is a finite measure on the unit sphere.
Whenr(IR?) = +oo, the growth of the ety measure near the origin can be estimated
using the exponent

a=inf{a>0: / |7 (dx) < oo}
lz|<1
This exponent was shown to give theldér regularity of levy processes (without Brownian
component) at = 0 by W.Pruitt in [26]. The conditiory inf(1, |z|*)7(dz) < oo satisfied
by Lévy measures implies that< o < 2, and whenX; is a stable process, this definition
coincides with the definition of the stability index.

Let
do(h) =ah if hel0,1/q]
= —oo otherwise;

do(h) =ah if he0,1/2]
=1 if h=1/2
= —oo otherwise.

Cj = / W(d.ﬁb‘)
2-i< |z]<2.2-7

We also define
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Note that the exponeut can also be defined using thé’s, by
a = sup(0, lim sup M)
j—o0
The following theorem yields the spectrum of singularities e¥y. processes (see [15]).
THEOREM 4. Let X, be a Levy process satisfying
limsupC; = +o00

and

Z2‘j \/Cj log(1+ () < oo.

e If X; has no Brownian componenf)(= 0), the spectrum of singularities of almost
every sample path of; is d,(h).

e If X; has a Brownian componenf)(# 0), the spectrum of singularities of almost
every sample path of; is d,(h).

Remarks:

e All L'evy processes such thatc (0, 2) satisfy the assumptions of Theorem 4.

e Recall thato is the almost everywhereditier exponent of vy processes without
Brownian component, see [26], which of course agrees with the theorem (case where
h = a).

e Many results have been proved concerning the fractal nature afatige of Léevy
processes, see for instance [7].
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