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1. Introduction

Large classes of signals exhibit a very irregular behavior. In the most complicated situations
this irregular behavior may follow different regimes, and can switch from one regime to an-
other almost instantaneously. This is obviously the case for recordings of speech signals;
precise recordings of turbulence data (which became available at the beginning of the 80’s)
show that turbulence also falls in this category. Such signals cannot be modeled by standard
stationary increments processes, such as Fractional Brownian Motion (or related Gaussian
processes) for instance. The techniques of multifractal signal analysis have been specifically
designed to analyze such behavior. Initially developed in the mid 80’s in the context of tur-
bulence analysis, they were applied successfully to a large range of signals, including traffic
data (cars and internet), stock market prices, speech signals, texture analysis, etc. We give
an overview of the mathematical tools that were developed for that purpose, and we present
some of the most successful applications. We start by introducing some simple mathematical
tools that will be useful to model the above notions.

First, what is meant by pointwise regularity? It is a way to quantify, by using a positive
real number�, the fact that the graph of a function has a certain smoothness at a pointx0.

The lowest possible level of regularity iscontinuity: A functionF is continuous atx0 if
jF (x)�F (x0)j ! 0 asx! x0; continuity corresponds to a regularity index� = 0. Similarly,
F is differentiable if there exists a linear functionP such thatjF (x)�P (x�x0)j ! 0 faster
thanjx� x0j asx! x0; this corresponds to a regularity index� = 1.

The following definition is a direct generalization of these two particular cases.
Let � be a positive real number andx0 2 IRm; a functionF : IRm ! IR is C�(x0) if

there exists a polynomialP of degree less than� such that

jF (x)� P (x� x0)j � Cjx� x0j�:(1)

Note that the constant term ofP (x� x0) is F (x0), and ifF isC [�] in a neighborhood of
x0, the polynomialP is exactly the Taylor expansion ofF atx0 of order�. Nonetheless, (1)
can hold for a large� even ifF is not differentiable in a neighborhood ofx0 (consider, for
instance, the “chirp”xn sin(x�n) in a neighborhood of0 for a largen).

The Hölder exponenth(x0) is the supremum of all� such that (1) holds. Note that
this Hölder exponent is a function which is defined point by point and describes the local
variations of the irregularity of the functionF .

We are interested in analyzing signals whose H¨older exponent may widely change from
point to point. This instability usually makes the task of determining the H¨older exponent
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h(x) very difficult numerically. In some cases the determination of the H¨older exponent is
either impossible or irrelevant. This is the case for multifractal functions, where the H¨older
exponent jumps from point to point. In that case the points with a given H¨older exponent form
fractal sets, and one is not interested in determining the exact value of the H¨older exponent
at every point but rather in extracting some relevant information concerning the size and
geometry of the singularities. The relevant mathematical tool studied in this context is the
spectrum of singularitiesd(�) (the functiond(�) associates to each positive� the Hausdorff
dimension of the setA� of the pointsx whereh(x) = �). Examples of such functions
include plots of random walks, interfaces developing in reaction-limited growth processes,
or turbulent velocity signals at inertial range (see [3]). The most important example where
one would like to determine a spectrum of singularities is probably the velocity of fully
developed turbulence. The reason is that turbulent flows are not spatially homogeneous: the
irregularity of the velocity seems to differ widely from point to point. This phenomenon,
called “intermittency”, suggests that the determination of the spectrum of singularities of the
velocity of the fluid might be a nontrivial function, universal (i.e., independent of boundary
conditions in the limit of small viscosity), and thus would yield important information on the
nature of turbulence.

Wavelet analysis has proved a powerful tool to study such classes of signals, and we
will start by investigating the relationship between the pointwise regularity of a functionF
and decay estimates of its wavelet transform; we will state this relationship in Section 2. In
Sections 3 and 4 we deal with a first application of this wavelet criterium: two solutions are
given to the problem of constructing a function with a given H¨older exponent. This problem
was first raised in the context of speech simulation (see [8]): a speech signal seems to have a
Hölder exponent with sharp fluctuations (especially in consons). Therefore, storing its H¨older
regularity might be an efficient way to compress the relevant information and could open the
way to automatic speech synthesis. The first construction, in Section 3, is deterministic.
It allows construction of the most general H¨older exponents. This generality must be paid
for: functions constructed through the procedure that we describe are extremely peculiar
and could not be used in any realistic simulation. The second construction, in Section 4, is
probabilistic: we construct a ‘multifractional Brownian motion’ which has near the pointx
the same features as a fractional Brownian motion of orderh(x). This construction is more
suited to applications, but the range of H¨older exponents that can be reached this way is
smaller. In particular,h(x) must be continuous.

In Section 5 we give some general results concerning multifractal functions. In particular,
we show how wavelet methods give information concerning the problem of the validity of
the multifractal formalism; we show that one of its limitations comes from the presence of
oscillating singularities (‘chirps’). We study these chirps in Section 6.

Section 7 is devoted to the study of functions that appear in many fields of applications:
the functions which have a few non-vanishing wavelet coefficients (which we call, for this
purpose,lacunary wavelet series). We show that, generically, these functions are multifractal
and exhibit chirps. In Section 8 we consider L´evy processes. A L´evy processXt (t � 0)
valued inIRd is, by definition, a stochastic process with stationary independent increments:
Xt+s � Xt is independent of the(Xv)0�v�t and has the same law asXs. The very general
definition of these processes makes them useful for modeling purposes in many fields, such
as the study of stock prices. We show that they are related with lacunary wavelet series, and
that they are also multifractal.
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2. Pointwise regularity and wavelet coefficients

Let F be a function defined onIR. One associates withF a function of two variables, its
wavelet transform defined in the “time-scale” open half planea > 0; b 2 IR by

C(a; b) =
1

a

Z
F (t) (

t� b

a
)dt(2)

(here is smooth, compactly supported, and has a vanishing integral).
Many properties of a functionF can be translated into simple size estimates of its wavelet

transform. If isCK and hasK vanishing moments,F belongs to the H¨older spaceC�(IR)
if (1) holds for everyx0, the constantC being independent ofx0. F 2 C�(IR) (for � < K)
if and only if

jC(a; b)j � Ca�:

If a is small, (2) takes into account only the values ofF close tob; thus it is not surprising
that local properties of a function can be studied via the wavelet transform. This is, for
instance, the case for pointwise regularity.

The following proposition [13] relates pointwise regularity with decay conditions of the
wavelet coefficients.

PROPOSITION1. LetF : IR! IR be a bounded function. IfF isCh(x0),

jC(a; b)j � Cah
�
1 +

jb� x0j
a

�h
:(3)

Conversely, suppose that there exists� > 0 such thatF 2 C�(IRd). If (3) holds, there
exists a polynomialP of degree at most[h] such that, ifjx� x0j � 1=2,

jF (x)� P (x� x0)j � Cjx� x0jhj log(jx� x0j)j:
In order to deduce from this proposition a characterization of the H¨older exponent, let us

introduce some appropriate notations. The first is a weak form of theO notation of Landau,
and the second expresses the fact that two functions are of the same order of magnitude,
disregarding “logarithmic corrections”.

DEFINITION 1. If F andG are two functions,F = O(G) if

lim sup
log jF j
log jGj � 1;

andF � G if

lim
log jF j
log jGj = 1:

Let h be the Hölder exponent ofF atx0. The following corollary is a direct consequence
of the definition of the H¨older exponent and of Proposition 1.

COROLLARY 1. Suppose thatF 2 C�(IRd) for an � > 0. The Ḧolder exponent ofF at
x0 is h if and only if the following two conditions hold:

� In the neighborhood of(a; b) = (0; x0)

jC(a; b)j = O(ah + jb� x0jh):(4)

� There exists a sequence(an; bn)! (0; x0) satisfying

jC(an; bn)j � ahn + jbn � x0jh:(5)

We will call such a sequence(an; bn) aminimizing sequencefor F atx0.
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3. Functions with prescribed Hölder regularity

The first problem we consider is the construction of functions with a given H¨older exponent.
This problem was first raised in the context of speech simulation (see [8]). A speech signal
has a Hölder exponent with sharp fluctuations (especially in consons), hence the idea that a
very efficient way to keep the relevant features of such a signal would be to store its H¨older
exponent rather than sampled values of the signal itself.

We sketch the proof of the following theorem which completely solves, in a constructive
way, the problem of determining which functions are H¨older exponents.

THEOREM 1. A nonnegative functionh(x) is the Ḧolder exponent of a continuous func-
tionF if and only if it can be written as a lim inf of a sequence of continuous functions.

The important point in the proof is the explicit wavelet construction of a functionF which
has a prescribed H¨older exponenth(x). Whenh(x) has a minimal H¨older regularity, a more
natural probabilistic construction is supplied by the multifractional Brownian motion that we
will study in the sequel.

Proof of Theorem 1: We let� (= �(j; k)) = k2�j and�h(f) = jf(x + h) � f(x)j. If
0 � h(x) � 1,

h(x) = lim inf
j!1

inf
2�j�jhj�2:2�j

log(�h(f) + 2�j
2

)

log h

so thath(x) is a lim inf of a sequence of continuous functions. The fact that this property
also holds without the assumptionh(x) � 1 has been observed by P. Andersen [1].

Let us now prove the converse result. We suppose that�(x) is a lim inf of a sequence
of continuous functions�n(x). The problem is local, so that we can suppose that the�n are
uniformly continuous. Thus, there existC1 functionsn such that

jn(x)� �n(x)j � C=n:

LetA(n) = n+ sup jrn(x)j:
Since it is difficult to impose the size of a wavelet transform at a given point, it is easier

to use anorthogonal wavelet basis

 j;k(x) =  (2jx� k); j; k 2 Z
where the wavelet is compactly supported, isCK, and has a vanishing integral andK first
vanishing moments, for a large enoughK (see [2]). We will construct the functionF by
defining its wavelet coefficients on an orthonormal wavelet basis. The wavelet coefficients of
F are defined as follows. Ifj is one of the numbers[A(n)],

Cj;k = inf(2�j= log j; 2�jn(�));

otherwise we takeCj;k = 0. Let h(x) be the Hölder exponent ofF at x. The direct part
of Proposition 1 adapts immediately to the discrete case of orthonormal wavelets (with the
change of notationa = 2�j, b = k2�j) and obviously implies that

h(x) � lim inf
[��2�j ;�+2�j ]3x

n(�)

� lim inf n(x) + 2�jA(n) = lim inf �n(x)

so thath(x) � �(x). In order to prove the converse estimate we use the second part of
Proposition 1. We have

Cj;k = inf(2�j= log j; 2�jn(�))

� inf(2�j= log j; 2�jn(x)2jjx��jA(n)):
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Sincej� � xj � 2�j=(log j)
2

, 2jjx��jA(n) � 2 for n (hencej) large enough, and Proposition 1
implies that the H¨older exponent atx is exactlylim inf n(x). Let us now give as an example
a class of functions that are H¨older exponents.

Let h(x) be a positive measurable function inL1. After perhaps redefiningh(x) on a set
of measure 0, we can suppose that8x

h(x) = lim inf
r!0

1

V ol(B(x; r))

Z
B(x;r)

�(u)du:

Let �(x) be a positiveC1 function supported in[�1; 1] of integral 1; then

h(x) = lim inf � � 1

n
�(
x

n
)

so thath(x) is a Hölder exponent.

4. Multifractional Brownian Motion

This section describes some joint work with A. Benassi and D. Roux in [5] (note that an
alternative construction has been proposed independently in [23]). We will construct and
analyze the (one or several dimensional)multifractional Brownian motion. It is a stochastic
process that also answers the question raised in the previous section: construct functions with
given Hölder exponents. However, here the restriction on the possible exponents is more
severe than before. We will have to suppose thath(x) satisfies a uniform H¨older condition.
The definition of the multifractional Brownian motion is a straightforward extension of the
definition of the Fractional Brownian Motion of ordera, except that instead of defining it by
a fractional integration of ordera of a white noise, we take a fractional integration of order
a(x) (formula (6) explains what we mean by that). We show how to construct a wavelet
basis which decorrelates this process (the wavelets are no longerL2 orthogonal but have the
same localization and smoothness properties as usual wavelets: they arevaguelettesin the
sense given by Yves Meyer in [25]). This analysis immediately yields the local regularity
and scaling properties of the multifractional Brownian motion. In particular, it implies that
in the neighborhood of a given pointx, it is a locally asymptotically self-similar processof
ordera(x).

A processX is said to be self-similar of order� if

8r > 0; Law f r��X(rx); x 2 IRdg = Law fX(x); x 2 IRdg:(6)

For instance, theFractional Brownian Motion of order� is self-similar (of order�). This
exact scaling law can hold only for very specific processes. In order to have a more flexible
notion, we define the renormalisation operatorsR�

x0;r by

R�
x0;rX(x) =

1

r�
(X(x0 + rx)�X(x0)):

A processX is locally asymptotically self-similar (L.A.S.S.) of order� 2 (0; 1) if there
exists some non trivial limit in law forR�

x0;rX (asr �!1).

DEFINITION 2. Let �(x) be a function defined onIRd such that0 < �(x) < 1. Let
A = sup�(x) and assume that�(x) 2 CA(IRd). The multifractional Brownian motion of
order�(x) is defined by

B�(x) =

Z
eix:� � 1

j�j�(x)+d=2dW (�):(7)

Observe that this definition is a straightforward extension of the usual Fractional Brown-
ian Motion when�(x) is constant.
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One easily checks that the functionC : IRd ! IR defined by

C2(x) =

Z
1� cos2 x:�

j�jd+2�(x)
d�

belongs toCA(IRd) and

IE(jB�(x+ h)� B�(x)j2) = C2(x)jhj2�(x) + o(h):

This function will be needed in the study of the local modulus of continuity of the multi-
fractional Brownian motion. Let us now show how to obtain a wavelet decomposition of
B�. We use the following decomposition of the white noise on the Fourier transforms of an
orthonormal wavelet basis

dW (�) =
X

�� ̂�(�)d�

where the�� are i.i.d. centered Gaussians and the wavelets are now indexed by the points
� = k2�j. Let

!�(x) =

Z
eix:� � 1

j�j�(x)+d=2  ̂�(�)d�(8)

so that

B�(x) =
X

��!�(x):(9)

The!� are “vaguelettes”,i.e., the!� and their partial derivatives satisfy the same decay
estimates as the � (see [5]).

The local regularity of the multifractional Brownian motion is given by the following
theorem, which shows that, indeed, the function�(x) is the Hölder exponent ofB�.

THEOREM 2. LetE be a bounded open set. Define

�E = inf
x2E

�(x) CE = sup
x2��1(�E)\E

c(x)

Law of the uniform modulus:P a:e: :

lim sup
jx�yj�!0

jB�(x)�B�(y)j
jx� yj�Ep2 log jx� yj = CE

p
d(10)

Law of the iterated logarithm:P a:e: : 8y 2 IRd;

lim sup
x�!y

jB�(x)� B�(y)j
jx� yj�(y)p2 log log jx� yj = C(y):(11)

Furthermore,B� is asymptotically self similar of order�(x0) at x0; i.e.,

lim
�!0+

Lawf B�(x0 + �u)� B�(x0)

��(x0)
; u 2 IRd g(12)

exists for everyx0 and is not trivial.

The idea of the proof is to use the vaguelette decomposition (9), which is reminiscent, for
instance, of the decomposition of the Brownian motion in the Schauder basis, and to use the
decorrelation of the random variables and the localization of the!�.

In [5] processes that behave locally like fractional Brownian motions are studied. Their
local characteristics may change from point to point so that they are fitted to the modeling of
textures that are not uniform. In [4], methods for the identification of these local parameters
are proposed. These methods can be applied when only one sample path of the process is
known.
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5. Multifractal functions

Standard examples of functions whose H¨older exponent changes from point to point are sup-
plied bymultifractal functions. The relevant mathematical notion that one tries to determine
when studying a multifractal functionF is thespectrum of singularitiesof F , which is the
functiond(h) defined for eachh � 0 as follows:d(h) is the Hausdorff dimension of the set
of pointsx0 where the H¨older exponent ofF is h. A multifractal function has a “nontriv-
ial” spectrum of singularities. Usually,d(h) will be defined and non-constant on an interval
[hmin; hmax].

The examples of Sections 3 and 4, though interesting for modeling purposes in signal
analysis, do not necessarily yield multifractal functions. As regards multifractal signals, it is
unrealistic to determine their H¨older regularity at every point since it is usually a function that
jumps everywhere. One is more interested in a qualitative approach,i.e., to determine how
large is the set of points which have a given H¨older exponenth Thus one wants to determine
the spectrum of singularities of the signal. Frisch and Parisi introduced, in the context of fully
developed turbulence, a formula which allows one to compute the spectrum of singularities of
a signal by a Legendre transform of some numerically easily computable function (see [11]).
Alternative formulas were proposed by Arneodo, Bacry and Muzy (see [3]). We will discuss
the validity of these so-calledmultifractal formalisms for functionsin several steps.

First let us mention that there exist a few mathematical examples where the H¨older ex-
ponent can be analytically determined and the validity of the multifractal formalism can be
tested. These examples include the class of self-similar functions (see [18] and [6]), a number
of specific examples which belong to the history of mathematics, (see [17], and references
therein), and also some classes of stochastic processes, for instance, L´evy processes (see
Section 8). A careful analysis of these meaningful examples gives good insight about the
conditions a signal must satisfy so that the multifractal formalism is valid. Basically there
must exist some self-similarity (deterministic or statistic), either of the function or of its
wavelet transform. Note that in most of these examples the H¨older exponent is determined
by a wavelet analysis of the function.

One of our interests is also to understand the reasons why the multifractal formalism may
fail. A well-known reason is the “phase transition” phenomenon that will be explained below,
but strong local oscillations of the signal can also be a more subtle cause of failure. Such
strong oscillations appear when the signal has at many points a chirp-like behavior. Chirps
are functions that behave likex� sin(1=x�) at the origin. This phenomenon had escaped
attention because the intuition concerning the multifractal formalism for functions was based
on corresponding previous results concerning the multifractal formalism for measures, and
of course positive measures, by definition, have no oscillations. Thus the considerations we
will develop are relevant for at least two reasons:

� They show that problems posed by the multifractal formalism are of a very different
nature for functions and measures.

� They give some insight about possible generalizations of the multifractal formalism
for functions that would take into account this oscillatory behavior.

Such generalizations will be presented in Section 8.
If one comes back to the definition of the spectrum of singularities, it is impossible to

compute numerically the spectrum of a signal since it involves the successive determination
of several intricate limits, and a blind application of the formula giving the definition of the
Hausdorff dimension would yield enormous, totally unstable calculations. The only method
is to find some “reasonable” assumptions under which the spectrum could be derived using
only averaged quantities (which should be numerically stable) extracted from the signal. Such
formulas, referred to as the multifractal formalism, were inferred by physicists. Let us now
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state the formulas that are based on a wavelet analysis.

The Wavelet Transform Integralmethod: let

~Z(a; q) =

Z
IRm

jC(a; b)jqdb;

if ~Z(a; q) � a�(q),

d(�) = inf
q
(q�� �(q) +m)(13)

The Wavelet Transform Maximamethod requires first the computation of

Z(a; q) =
X
`

sup
(b;a0)2`

jC(a0; b)jq

where` is a line of maxima of the wavelet transform considered on[a; 0], and sup
(b;a0)2`

means

that the supremum is taken for(b; a0) on this line of maxima (so thata0 � a). If Z(a; q) �
a�(q), then

d(�) = inf
q
(qh� �(q)):(14)

Numerically, according to [3], the best method seems to be the last one, probably be-
cause the restriction of the computation to the maxima insures that small errors are taken into
account less (because, at the maxima, they are relatively less important). More generally,
methods that involve the wavelet transform are numerically more stable, probably because
they involve only averaged quantities and not the direct values of the function.

The multifractal formalism may be surprising at first sight because it relates pointwise
behavior to global estimates. Before giving some mathematical justifications for it, it may be
enlightening to give the heuristic argument from which it is derived. Though this argument
cannot be transformed into a correct mathematical proof, it shows at least why these formulas
can be expected to hold, and a careful study of its implicit assumptions shows for which type
of functions it cannot hold.

Let us calculate the contribution of the H¨older singularities of order� to the integralZ
IRm

jC(a; b)jqdb:

Near a singularity of order� we have, in a small box of sizea, jC(a; b)jq � a�q, because
Proposition 1 basically means that ifF isC�(x0) and not smoother, then the order of magni-
tude of its wavelet transform in the conejb � x0j � a is abouta�. If the dimension of these
singularities isd(�), it means that there are abouta�d(�) such boxes, each of volumeam, so
that the total contribution to the integral isa�q+m�d(�). The real order of magnitude of the
integral should be given by the largest contribution, so that

�(q) = inf
�
(�q +m� d(�)):(15)

This formula is not the one we are looking for, since we know�(q) and we wantd(�).
However, if (15) holds and ifd is concave (we will see that in general this assumption need not
be verified, although in many cases it is),d(�) is recovered by an inverse Legendre transform
formula which yields (13). Of course, ifd is not concave one expects (13) to yield only the
convex hull of the spectrum. This is the “phase transition” phenomenon that we mentioned
earlier.

Though (14) does not always hold, the following upper bound is valid ifF has a minimal
uniform Hölder regularity (see [21]).
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PROPOSITION2. The following upper bound holds for any functionF 2 C�(IRm) for
some� > 0:

d(�) � inf
p
(m� �(p) + �p):(16)

In general (16) cannot be an equality, see [18]. The intuitive explanation is that any
criterium which is invariant after permuting the positions of the wavelet coefficients at the
same scale cannot yield the spectrum of singularities, essentially because it cannot contain the
geometrical information which is relevant in the definition of the dimension. Thus, formulas
involving these quantities can be true only in some very specific cases where we have an
a-priori knowledge of this geometry, which is clearly the case for self-similar functions.

Let us now try to understand reasons for the failure of the multifractal formalism. The
main argument in the heuristic calculation that justified it is that we interpreted Proposition 1
as meaning that ifF isC�(x0) and not smoother, then the order of magnitude of its wavelet
transform in the conejb � x0j � a is abouta�. This holds for cusp-like singularities like
jx � x0j� but not for “chirp-like” singularities, which have a very small wavelet transform
in the cone. We will come back to this problem and study chirp behaviors carefully in the
following section. We will develop in Section 8 a multifractal formalism which takes into
account these oscillatory behaviors, but we first need to develop some mathematical tools
that allow the capture of these chirps.

6. Chirps and oscillating singularities

This section describes joint work with Y. Meyer, A. Arneodo, E. Bacry and J-F. Muzy. Up to
now we described the singularity off(x) at x0 only by the Hölder exponenth(x0), so that,
if h(x0) � 1, we looked for the order of magnitude ofjf(x) � f(x0)j whenx tends tox0,
without taking into account the oscillations off(x)�f(x0). We also want to investigate very
strong oscillatory behavior (chirps of the formx� sin(1=x�)) and show that this behavior can
be characterized by simple conditions on the wavelet transform.

First we discuss the mathematical notion ofoscillating singularity(or chirp). There is
general agreement on an informal definition. A chirp of type(h; �) atx0 should oscillate as

f(x) = jx� x0jh sin( 1

jx� x0j� )(17)

in the neighborhood ofx0. Hereh is the Hölder exponent off atx0, and� measures the
speed at which the oscillations pile up nearx0 (one can relate� to the speed of divergence of
the instantaneous frequency). In signal analysis, this notion covers functions whoseinstan-
taneous frequencyincreases fast at some time (see [27]). A remarkable property of (17) is
that, after each integration, the H¨older exponent of the primitive atx0 is increased by1 + �
and not1 as could be expected. This remark is the starting point of the definition of chirps
given by Yves Meyer (see [21], for instance). We will discuss the mathematical definition
of an oscillating singularity. We will actually use a slightly different definition, which has
the additional advantage of being stable with respect to the addition of “smooth noise”, a
feature which is mandatory for using this notion in signal processing. Our definition is based
on the computation of pointwise H¨older exponents. We will thus prove some general results
concerning H¨older exponents. This will enable us to associate to any functionF : IRd ! IR
two oscillating singularity exponents(h; �) at every pointx0.
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6.1. Oscillating singularity exponents

The choice of the definition we use is based on the following remark. LetB be a Brownian
motion and consider the function

C(x) = x1=3 sin(1=x) + B(x):(18)

The strongest singularity at 0 is the chirpx1=3 sin(1=x), and one actually observes this
oscillatory behavior after magnifying the graph sufficiently near the origin. But, after one in-
tegration, the random term becomes dominant, and the oscillatory behavior disappears. These
oscillations, which do not exist in the primitive, should be reflected in the chirp exponents.

Let us now show how we can introduce a definition ofoscillating singularitieswhich
agrees with the definition of a chirp for functions such as (17) and which has the required
stability properties with respect to the addition of “smooth noise”. If

F (x) = jx� x0jhg( 1

jx� x0j� ) +O(jx� x0jh0)(19)

whereh0 > h, the first term describes the local behavior ofF nearx0. In that case, we
would like to say that the type of oscillating singularity atx0 is (h; �), i.e., the oscillation
of F should be the oscillation of the lowest order term of its expansion. Clearly, we need
to require thatg has one vanishing moment. After one integration, the main term of the
primitive ofF may be the remaining term, which isO(jx� x0jh0+1). This last remark shows
that, in sharp contrast with the definition of chirps given in [21], the oscillation exponent�
of an oscillating singularity should not be determined using a large number of integrations,
or even one integration.

Let ht(x0) denote the H¨older exponent of the fractional primitive of ordert at x0 of the
functionF defined by (19). More precisely, ifF is a bounded function, we denote byht(x0)
the Hölder exponent atx0 of the function

Ft = (Id��)�t=2(�F ):(20)

Here� is aC1 compactly supported function satisfying�(x0) = 1, and the operator
(Id��)�t=2 is the convolution operator which amounts to multiplying the Fourier transform
of the function with(1 + j�j2)�t=2. If one performs a fractional integration of ordert small
enough,i.e., such that

h+ (1 + �)t < h0 + t;(21)

thenht(x0) = h + (1 + �)t (hereh, h0 and� are the exponents used in 19). We see that
the gain of pointwise H¨older regularity atx0 after a fractional integration of very small order
t is (1 + �)t. One can actually show that the functiont! ht(x0) is concave, so that its right
derivative exists at 0. Hence we have the following definition for exponents of oscillating
singularities.

DEFINITION 3. Let F : IRd ! IR be a bounded function. The oscillating singularity
exponents ofF at a pointx0 are defined by

(h; �) =

�
h(x0);

@

@t
ht(x0)

����
t=0

� 1

�
:(22)

These exponents belong to[0;+1]� [0;+1]. Note that, ifht(x0) = +1 the exponent
� is not defined.

Definition 3 shows that the exponent of oscillating singularity is defined through H¨older
exponents. It should therefore be computable using the wavelet transform, as a consequence
of Corollary 1. The following proposition gives a characterization of the oscillating singular-
ity exponents atx0 of a functionF 2 C�. It is a direct consequence of the previous results.
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PROPOSITION3. LetF 2 C�(IRd) for some� > 0. The oscillating singularity exponents
at x0 are (h; �) if and only if the wavelet transform ofF satisfies the following conditions:

� jC(a; b)j = O(ah + jb� x0jh) in the neighborhood of(a; b) = (0; x0)
� there exists a sequence(an; bn)! (0; x0) such that

(an + jbn � x0j)1+� � an
jC(an; bn)j � ahn + jbn � x0jh

�
(23)

� � is the smallest number such that (23) holds.

We denote byEh;� the set of points where the oscillating singularity exponents are(h; �),
and byd(h; �) the Hausdorff dimension ofEh;�. By definitiond(h; �) is the spectrum of
oscillating singularities.

7. Lacunary wavelet series

The success of wavelet techniques in many fields of application is largely due to the follow-
ing remarkable property. Many signals, images, or mathematical functions can be accurately
represented in a wavelet basis using very few nonzero coefficients. This is the case for piece-
wise smooth signals, for the velocity of turbulent flows [3], and for solutions of nonlinear
hyperbolic equations (see [9]). The starting point of the denoising algorithm of images called
wavelet shrinkageis based on the remark that, since an image composed of piecewise smooth
parts has few nonzero wavelet coefficients, a noisy image can be denoised by setting to zero
all small wavelet coefficients; this amounts to approximating the noisy image by a lacunary
wavelet series [10].

Mathematically, the fact that a function has few non-vanishing wavelet coefficients can
be formalized by stating that it belongs to Besov spacesBs;p

p for p close to zero (see [9]).
Though many signals or functions have been shown to be accurately represented by la-

cunary wavelet series, the properties of these functions have never been investigated. Our
purpose is to investigate the properties of a simple probabilistic model of such series. We
will see that, though the model is itself extremely simple, the corresponding random func-
tions have an extremely complicated local structure. Namely, they exhibit a whole range of
oscillating singularities located on random fractal sets.

The functions considered in the previous section have very few non-vanishing wavelet
coefficients. They are thus examples of lacunary wavelet series. One might believe that the
oscillating singularities are created because of the very specific position of the non-vanishing
wavelet coefficients. This is in fact not the case, as the following example will show.

Let � < 1. For eachj � 0 we choose at random and independently[2�j] locations
k2�j 2 [0; 1], and the corresponding wavelet coefficientsCj;k take the value2��j. These
choices are made independently for eachj. We set to 0 all other wavelet coefficients. This is
the most elementary model of random lacunary wavelet series one can think of.

In order to study theses wavelet series, we now introduce the notion ofchirp exponents,
which differs slightly from the definition of “oscillating singularity exponent” given in the
previous section.

DEFINITION 4. Leth � 0 and� > 0. A functionf 2 L1 is a chirp of type(h; �) at x0
if the iterated primitivesf (�1); : : : f (�n); : : : satisfyf (�n) 2 Ch+n(�+1)(x0).

The following characterization of [21] holds.

PROPOSITION4. A functionf 2 L1 is a chirp of type(h; �) at x0 if and only if there
exists a functionr(x) 2 C1 in a neighborhood ofx0, and� > 0, such that

f(x) = r(x� x0) + (x� x0)
hg+

�
(x� x0)

��
�

if 0 < x < �
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and

f(x) = r(x� x0) + jx� x0jhg�
�jx� x0j��

�
if � � < x < 0;

the functionsg+ andg� being “infinitely oscillating”, i.e., they have bounded primitives of
any order.

The following property allows one to define “chirp exponents”.

LEMMA 1. Let f 2 L1. If f is a chirp of type(h; �) at x0 with � > 0 andf 2 Ch0(x0)
for h0 > h, then8� 0 < �, f is a chirp of type(h0; � 0) at x0.

This is a straightforward consequence of Definition 4 and of the characterization given by
Proposition 1. This lemma means that the interior of the set of couples(h; �) such thatf is
a chirp of type(h; �) at x0 is a rectangle,h � h0, � < �0. We can use these two values to
define chirp exponents.

DEFINITION 5. The chirp exponents of a functionf at x0 are
� h(x0) (which is the Ḧolder exponent atx0),
� �(x0) = supf� : 9h such thatf is a chirp of type(h; �) at x0g.
Using this definition, we naturally obtain the notion ofchirp spectrum: The chirp spec-

trum d(h; �) of f is the Hausdorff dimension of the set of points wheref has the chirp
exponents(h; �).

The reader will have noticed the difference with the notion ofspectrum of oscillating
singularitieswhich was defined in Section 6.1. The notion of oscillating singularities is
adapted to the analysis of real signals, since it is not sensitive to perturbations by smooth
noise, while the notion of chirp is adapted to mathematically defined functions. Chirps were
first discovered in a nontrivial mathematical function by Y.Meyer in [21]. He showed that the
trigonometric series

P
n�2 sin(n2x) has a dense set of chirps of exponents(3=2; 1).

The problem of prescribing chirp exponentsh(x) and�(x) simultaneously is much harder
than prescribing the H¨older exponenth(x) alone, and we do not know which couples of
functions(h; �) can be chirp exponents. Some partial results are nonetheless available:

� The function�(x) must vanish on a dense set (see [12]).
� Arbitrary couples(h; �) which are liminf of sequences of continuous functions can be

prescribed outside some specific dense sets of measure 0, see [20].

THEOREM 3. The lacunary wavelet seriesF defined above is almost surely a multifractal
function. Its chirp spectrum is supported by the segment

h = �(� + 1) for h 2 [�; �=�]

and on this segment

d(h; �) = �(� + 1):

We won’t prove this theorem here, but show how it reduces to a problem of random arcs
on the circle (see [14] for a complete proof).

For eachj denote byEj the set ofk’s such thatCj;k is not vanishing. Let� 2 [0; 1].
Denote byIj;k the interval centered atk2�j (k 2 Ej) and of length2��j. Let

E� = lim supj!1

[
k

Ij;k if � 2 [�; 1);

G� =
\
�0<�

E�0 �
[
�0>�

E�0 if � < � < 1;

G� = E� �
[
�0>�

E�0 ; G1 =
\
�0<1

E�0 :
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TheE� are decreasing (in�) andE� is almost surely the whole circle ifC is large enough
(this is a straightforward consequence of results on coverings of the circle by random arcs,
see [22]). Thus, every point of the circle belongs to one of theG�. The following proposition
shows that the points that belong to one of theG� have the same regularity and oscillation.

PROPOSITION5. If x 2 G�, the chirp exponents ofF at x are

(h; �) = (
�

�
;
1

�
� 1):

(Sketch of ) proof:If x 2 E�, there exists an infinity of pointsk2�j (k 2 Ej) such that

jx� k2�jj � 2��j;

so that the H¨older exponent ofF at x is at most�=�. By a similar argument, the H¨older
exponent ofF (�n) atx is at most(�+ n)=�.

Conversely, ifx =2 E�, inside a domainjx � k2�jj � 2��j all wavelet coefficients ofF
vanish forj large enough. Thus, ifCj;k is a non-vanishing wavelet coefficient,

Cj;k = 2��j = (2��j)�=� � jx� k2�jj�=�;
which yields the proposition, and the determination of the spectrum ofF is reduced to the
computation of the dimensions of the setsG�.

8. A multifractal formalism for chirps

We use, as above, an orthogonal wavelet, and we chooseL1 normalization for wavelets, so
that we write

f(x) =
X
j;k

Cj;k (2
jx� k)(24)

whereCj;k = 2j
Z
f(t) (2jt � k)dt. From now on we will use the following simpler

notation:� and�0 will denote respectively the intervals�j;k = k2�j + [0; 2�j] and�j0;k0 =
k02�j

0

+ [0; 2�j
0

], C� will denote the coefficientCj;k, and � will denote the wavelet (2jx�
k).

The following new functional spaces will allow us to establish this multifractal formalism.

DEFINITION 6. Letp > 0, ands; s0 2 IR. A functionf belongs toOs;s0

p (IRd) if its wavelet
coefficients satisfy

sup
j2Z

2sj

 X
k

sup
�0��

jC�02s0j0jp
!1=p

<1:(25)

The left hand-side defines theOs;s0

p (IRd)-seminorm.

Remarks:This definition is independent of the wavelet basis chosen, see [19]. It is a
variation on the wavelet definition of Besov spaces, since the Besov spacesBs;1

p can be
defined by the condition

sup
j2Z

2�nj=p

 X
k

jC�2jsjp
!1=p

<1:

We now establish, by thermodynamic arguments (similar to those advocated above), a
multifractal formalism which yieldsd(h; �) from the knowledge of the wavelet coefficients
of f . This formula is motivated by two considerations: to obtain more complete information
about the H¨older singularities of the signal and, by taking into account the “chirp-type” be-
havior explicitly in the construction of the multifractal formalism, to eliminate one cause of



124 S. Jaffard / Mathematical Tools for Multifractal Signal Processing

failure of the standard multifractal formalism, and therefore to obtain a formula with a wider
range of validity.

Let

�(p; s0) = lim inf
j!+1

log

 X
k

sup
�0��

jC�0jp2s0j0
!

log 2�j
= sup

n
s : f 2 Os=p;s0=p

p

o
:

If f has a chirp of exponents(h; �) atx0, its wavelet coefficients are of the order of magnitude
of jk2�j�x0jh near the curve2�j � jk2�j�x0j1+� and decay quickly away from this curve.
Our purpose is to estimate, for each(h; �), the contribution of the chirps of exponents(h; �)
to the quantity X

�2�j

sup
�0��

jC�0jp2s0j0:(26)

Consider a cube� of size2�j which contains a chirp of exponents(h; �). The wavelet
coefficientsC�0 for �0 � � are negligible as long as2�j

0 � (2�j)1+�, i.e., as long asj 0 �
j(1 + �). Whenj 0 � j(1 + �), for some values ofk0,

jC�0 j � (2�j)h � 2�j
0 h
1+� ;

so that

sup
�0��

�
jC�0 jp2s0j0

�
� 2�j

0( hp
1+�

�s0) � 2�j(hp�(1+�)s
0)

(as long ass0 � ph=(1 + �), otherwise the supremum is infinite). The contribution of the
chirps of exponents(h; �) to (26) is thus

2d(h;�)j2�j(hp�(1+�)s
0) = 2�j(hp�(1+�)s

0�d(h;�)):

Whenj ! +1, the main contribution is obtained for the couple(h; �) realizing the infimum
of hp� (1 + �)s0 � d(h; �). Hence, we have the heuristic formula

�(s0; p) = inf
h;�

hp� (1 + �)s0 � d(h; �):

If d(h; �) is a convex function, it follows that

d(h; �) = inf
s0;p

hp� (1 + �)s0 � �(s0; p):(27)

One can easily check that this formula enables the recovery of the increasing part of the
spectrum in the case of lacunary wavelet series. Obtaining the decreasing part of the spectrum
would correspond to an infimum in (27) obtained for negative values ofp, which cannot be
expected from a mathematical approach of this type (in the case of the standard multifractal
formalism, this problem already appeared, and was solved numerically by the use of the
“Wavelet Maxima Method”, see [3], or [18] for a mathematical discussion).

If one is interested only in obtaining the spectrum of singularitiesd(h), it can be recovered
from (27). For a fixedh, we expect the value of� which gives the largest contribution to (27)
to yield the right dimensiond(h), hence we expect the spectrum of singularities to be obtained
by the formula

d(h) = sup
�
d(h; �) = sup

�
inf
s0;p

(1 + �)s0 + hp� �(s0; p):(28)

Of course, this formula is by no means equivalent to the standard multifractal formalism,
as can be checked on the example of lacunary wavelet series.

A mathematical investigation of the range of validity of these formulas, together with
numerical algorithms, are now being worked out in collaboration with A. Arneodo, E. Bacry
and J-F. Muzy, and will be the subject of a forthcoming paper.
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9. Lévy processes

The sample paths of L´evy processes are a very simple and natural example of multifractal
functions. Up to recently only very peculiar mathematical functions were known to be mul-
tifractal. The analysis of L´evy processes show that multifractality is generic in some sense.
The very general definition of these processes makes them useful for modeling purposes in
many fields, for instance finance [24].

A Lévy processXt (t � 0) valued inIRd is, by definition, a stochastic process with
stationary independent increments.Xt+s � Xt is independent of the(Xv)0�v�t and has the
same law asXs. Brownian motion and Poisson processes are examples of L´evy processes
that can be qualified asmonofractal. For instance, the H¨older exponent of the Brownian
motion is everywhere1=2. These two examples are not typical. Most L´evy processes are
multifractal. Furthermore, their spectrum of singularities depends precisely on the growth of
theLévy measurenear the origin. Before stating our main theorem, we need to recall some
basic definitions and results about L´evy processes.

The characteristic function of a L´evy processXt (taking values inIRd) satisfies

IE(eih�jXti) = e�t (�);

where

 (�) = ihaj�i+ 1

2
Q(�) +

Z
IRd

�
1� eih�jxi + ih�jxi1jxj<1

�
�(dx):

Q is a positive quadratic form, and�(dx) is the Lévy measure ofXt, i.e., a positive measure
defined onIRd � f0g satisfying Z

inf(1; jxj2)�(dx) <1:(29)

The Lévy measure is usually not integrable in the neighborhood of the origin. This is, in
particular, the case for stable L´evy processes of index� which satisfy (in polar coordinates)

�(dr; d�) = r���1dr�(d�)

where� is a finite measure on the unit sphere.
When�(IRd) = +1, the growth of the L´evy measure near the origin can be estimated

using the exponent

� = inff� � 0 :

Z
jxj�1

jxj��(dx) <1g:

This exponent was shown to give the H¨older regularity of Lévy processes (without Brownian
component) att = 0 by W.Pruitt in [26]. The condition

R
inf(1; jxj2)�(dx) < 1 satisfied

by Lévy measures implies that0 � � � 2, and whenXt is a stable process, this definition
coincides with the definition of the stability index.

Let
d�(h) = �h if h 2 [0; 1=�]

= �1 otherwise;

d�(h) = �h if h 2 [0; 1=2]
= 1 if h = 1=2
= �1 otherwise.

We also define

Cj =

Z
2�j�jxj�2:2�j

�(dx):
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Note that the exponent� can also be defined using theCj ’s, by

� = sup(0; lim sup
j!1

log2Cj
j

):

The following theorem yields the spectrum of singularities of L´evy processes (see [15]).

THEOREM 4. LetXt be a Ĺevy process satisfying

lim supCj = +1
and X

2�j
q
Cj log(1 + Cj) <1:

� If Xt has no Brownian component (Q � 0), the spectrum of singularities of almost
every sample path ofXt is d�(h).

� If Xt has a Brownian component (Q 6� 0), the spectrum of singularities of almost
every sample path ofXt is d�(h).

Remarks:

� All L évy processes such that� 2 (0; 2) satisfy the assumptions of Theorem 4.
� Recall that� is the almost everywhere H¨older exponent of L´evy processes without

Brownian component, see [26], which of course agrees with the theorem (case where
h = �).

� Many results have been proved concerning the fractal nature of therange of Lévy
processes, see for instance [7].
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[12] B. GUIHENEUF, S. JAFFARD AND J. LÉVY-VÉHEL Two results concerning Chirps and 2-microlocal

exponents prescription, To appear in App. and Comp. Har. Anal..
[13] JAFFARD S. Pointwise smoothness, two-microlocalization and wavelet coefficientsPublicacions Matema-

tiques Vol.35 p.155-168 (1991).
[14] S.JAFFARD On lacunary wavelet series.(preprint).
[15] S.JAFFARD The multifractal nature of Ĺevy processes.(preprint).
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