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ABSTRACT. Current multimedia technologies call for efficient ways of representing
signals. We review several efficient methods for signal representation, emphasizing
potential applications in signal compression and denoising. We pay special attention
to the representations which are adapted to “non-stationary” features of signals, in
particular the classes of bilinear representations, and their approximations using time-
frequency atoms (mainly wavelet transforms and Gabor transforms).

1. Introduction

In various instances in signal processing, an important part of the processing is achieved by
anefficient representationof the considered signal. This is the case, for example, in signal
compression, where coding and bit allocation often come after a transform which expresses
the signal in an adapted basis, with respect to which a large number of coefficients may be
discarded. This is true for signal denoising as well, for an efficient representation “concen-
trates” the useful signal within a few significant coefficients, while noise remains distributed
over all coefficients. Therefore, an efficient representation, followed by simple operations
such as thresholding, generally yield good denoising algorithms.

The goal of this contribution is to describe a number of simple efficient representations
that are generated by using “time-frequency” decompositions, and to show how these may
be used for practical purpose. Special attention is paid to problems of spectral estimation,
for non stationary time series. We shall mainly limit our discussion to simple decomposi-
tions such as wavelet or Gabor decompositions, in order to emphasize the difficulties of such
approaches, but we will also devote a few words to more sophisticated tools.

2. “Non-Stationary Tools”

Let us start by describing a few tools which we will use in the following. The most usual tool
is the Fourier transform. It is well known that Fourier analysis is well adapted to “stationary
situations”, i.e. signals which possess some translation invariance properties (we use the
following convention for Fourier transformation:̂f(!) =

R
f(t)e�i!tdt.) When translation

invariance assumptions are relaxed the Fourier transform is no longer a well-adapted tool, and
alternatives are needed. Among them, time-frequency and time-scale methods have become
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quite popular in recent years, as they provide simple approximations of optimal, Karhunen-
Loève-type decompositions.

Briefly, the Karhunen-Lo`eve (KL for short) decomposition is obtained by diagonalizing
the covariance of a second order random time series. LetfXt; t 2 Rg be a second order
zero mean time series, and letC be its covariance operator, defined by its matrix elements

hCf; gi = E

n
hX; fihX; gi

o
. C is non-negative definite (and self-adjoint.) Assume for the

sake of simplicity thatC has discrete spectrum, and denote byf'k; �kg the eigenfunctions and
eigenvalues ofC. This yields an expansion of the time series as a (random) linear combination
of the functions'k:

Xt =
X
k

p
�kwk'k(t)(1)

Such an expansion is “doubly orthogonal” in the sense that

h'k; '`i = �k`(2)

E fwkw`g = �k`(3)

However, KL-type decompositions are sometimes of poor practical interest. Indeed, diag-
onalizing the covariance becomes in practice a matrix diagonalization problem, which be-
comes cumbersome as the matrix size increases. In addition, prior to diagonalization, the
covariance matrix has to be estimated, generally from one or (in rare cases) a few realiza-
tions of the time series. All together, performing a KL decomposition may become a difficult
practical problem, and it makes sense to seek alternative methods, at least in some specific
situations where somea priori information about the time series is available. One particular
case is that of time series which are “not far from stationary”, i.e., to which one may want
to associate a sort of time dependent spectral representation. Studying such time series leads
to the notion of time-frequency representations. Another example is provided by time series
which present some sort of scale invariance. This is the realm of time-scale analysis. In what
follows, we briefly describe these topics.

2.1. Bilinear representations

Signals are often modeled either as deterministic signals, or more generally as (second order)
random time series. In what follows we will focus on the random situations (unless otherwise
specified), the deterministic case being easily obtained. The simplest model to consider is
that of (weakly) stationary time series. However, in many situations signals can hardly be
considered stationary, and it is necessary to turn to alternative tools which generalize the usual
ones in non stationary situations. Several such tools have been developed in the literature,
the most commonly used being probably the KL-based methods. However, there are many
situations in which the signals to be analyzed possess some characteristics which may be
better understood in terms of joint time-frequency representations. The prototypes of such
time-frequency representations are the so-calledambiguity functionandWigner function(or
Wigner-Ville function). The ambiguity function was introduced by Woodward in a radar
context. The ambiguity function is essentially obtained by taking scalar products of a function
with a time-frequency shifted copy of itself. More precisely:

DEFINITION 2.1. 1. Letf 2 L2(R). Its ambiguity function is defined by

Af(�; �) =

Z
f(t+ �=2)f(t� �=2)e�i�tdt :(4)
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2. Let fXt; t 2 Rg be a second order time series. Then its ambiguity function is defined
by

AX(�; �) = E

�Z
Xt+�=2X t��=2e

i�tdt

�
:(5)

The ambiguity function was originally introduced in a deterministic context. The de-
terministic ambiguity function may be seen as a scalar product off with a translated and
modulated copy off (up to a trivial factor). It is easily seen that iff 2 L2(R), thenAf is
a bounded function (withjjAf jj1 � jjf jj2). In addition, a direct calculation shows that if
f 2 L2(R), thenAf 2 L2(R2), and thatjjAf jj22 = 2�jjf jj4. More generally, it may be shown
thatAf 2 Lp(R2) for all p 2 [1;1] (bounds for the correspondingLp(R2) norms have been
derived by E. Lieb).

The non-deterministic version may be given a similar interpretation. Its properties depend
on the properties of the covariance operatorC of the process, defined by its matrix elements:
for all f; g 2 D(R),

hCf; gi = E

n
hX; gihX; fi

o
:(6)

For example, ifC extends to a Hilbert-Schmidt operator, which we denote byC 2 L2, then
A 2 L2(R2).

REMARK 2.2. Ambiguity functions, orcross-ambiguity functionsof the form

Af;g(�; �) =

Z
f(t+ �=2)g(t� �=2)e�i�tdt(7)

are widely used in the context of radar detection. There,f is an incident waveform andg is
the observation, supposed to be an attenuated time-frequency shifted copy ofg, of the form
g(t) = Aei!0(t�t0)f(t � t0) + noise. Here,A; !0 and t0 are constants of practical interest,
to be estimated. The maxima of the cross ambiguity function provide estimates for these
constants.

As we shall see, ambiguity functions only provide estimates for the spreading of the
analyzed object in the joint time-frequency plane, but not on its localization in that space.
Such an analysis is done by theWigner-Villefunction, defined by

DEFINITION 2.3. 1. Letf 2 L2(R). Its Wigner-Ville function is defined by

Ef(b; !) =
Z
f(b+ �=2)f(b� �=2)e�i!�d�(8)

2. LetfXt; t 2 Rg be a second order time series. Then its Wigner-Ville function is defined
by

EX(b; !) = E

�Z
Xb+�=2Xb��=2e

�i!�d�

�
(9)

REMARK 2.4. It is readily seen that the Wigner-Ville function and the ambiguity function
are related via a symplectic Fourier transform

A(�; �) =
1

2�

Z Z
E(b; !)e�i(�b�!�)db d! ;(10)

E(b; !) =
1

2�

Z Z
A(�; �)ei(�b�!�)d� d� :(11)

The same holds true in the deterministic context. Therefore, the Wigner function is square-
integrable as soon as the ambiguity function is.
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FIGURE 1. Example of a “Time-Frequency Atom” (left top), together with its Fourier
transform (right top); its Ambiguity function (left bottom) and its Wigner function
(right bottom) are displayed as gray levels images.

It is important to notice the major difference between the ambiguity function and the
Wigner function (even though their expressions are quite close). As we have seen, the am-
biguity function is a scalar product between two time and frequency shifted copies of the
signal: iff 2 L2(R):

Af(�; �) = hT��=2E��=2f; T�=2E�=2fi
whereT andE are translation and modulation operators respectively, defined byTbf(t) =
f(t � b), andE!f(t) = ei!tf(t). For f 2 L2(R), one hasjAf(�; �)j � Af(0; 0) = jjf jj2,
and the decay ofA gives indications about the localization properties of the analysed object
(process or function) in the time-frequency plane.

On the other hand, the Wigner-Ville function has a more complex structure, i.e.,

Ef(b; !) = 1

2
h�T�bE�!f; T�bE�!fi ;

where� is the parity, defined by�f(t) = f(�t), and actually provides estimates for time-
frequency localization of signals. An example stressing the difference is given in Figure 1, for
the particular case wheref(t) is a modulated Gaussian function. As expected, the ambiguity
function is localized near the origin in the time-frequency domain, while the Wigner function
is concentrated near a specific point in the time-frequency plane, yielding estimates for the
time and frequency content of the analyzed function.

Of interest too is thecross Wigner-Ville function, defined for allf; g 2 L2(R) by

Ef;g(b; !) =
Z
f(b+ �=2)g(b� �=2)e�i!�d� :(12)

2.2. Properties

The Wigner function possesses a large number of important properties. We list here a number
of simple ones, refering to [9] for a detailed account.
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1. Marginals: The first two properties we mention deal with the behavior of marginals
of the Wigner function. Namely, the Wigner function integrated with respect to the
time variable or the frequency variable reproduces the power spectrum and the (square
modulus of the) signal. More precisely, we have the following:

Let f 2 L2(R). Then
Z
Ef(b; !)d! = 2�jf(b)j2, and

Z
Ef(b; !)db = jf̂(!)j2.

2. Orthogonality relations:Let f; f 0; g; g0 2 L2(R). Then we know thatEf;g; Ef 0;g0 2
L2(R2), and a simple calculation shows that

hEf;g; Ef 0;g0i = 2�hf; f 0i hg; g0i
Such relations are known as orthogonality relations, or asMoyal’s formula.

3. Time-frequency localization:The second set of properties deals with localization. It
is well known that the Fourier transform is “optimal” in the case of sine waves, in the
sense that the Fourier transform of a sine wave is a delta distribution, which is “opti-
mally localized”. Since the Wigner function plays the role of a generalized spectrum,
it makes sense to search for signals with “perfect” localization in the time-frequency
plane. In the case of Wigner’s function, such signals are provided by the class of (gen-
eralized) “linear chirps”. A correct treatment of such cases (which involves Wigner
functions defined as distributions) is out of the scope of the present discussion, and
we limit ourselves to a formal discussion. Suppose thatf(t) is defined asf(t) =
exp(i!0t + �t2=2)), for some parameters!0; �. ThenEf(b; !) = �(! � (!0 + �t)),
i.e., has “perfect localization” on a straight line in the time-frequency plane. Such
signals may be viewed as time-frequency rotated copies of sine waves, and include as
limiting cases Dirac deltas, which are optimally localized too. Unfortunately, such a
property does not generalize to frequency modulations different from linear ones (see
Remark 2.5 below.)

4. Bilinearity: Inherent to the bilinear nature of Wigner’s function is the existence of
“cross terms”. More precisely, letf 2 L2(R) be of the formf(t) = f1(t)+f2(t), with
f1; f2 2 L2(R). Then

Ef(b; !) = Ef1(b; !) + Ef2(b; !) + 2<Ef1;f2(b; !) ;
where the cross Wigner-Ville function has been defined in (12). The presence of such
interference terms (sometimes called “ghost terms”) is generally considered a serious
difficulty when it comes to interpreting a Wigner representation. One classical method
amounts to getting rid of ghosts by appropriate smoothings of the representation (see
below). However, smoothing modifies the localization properties of the representa-
tion. In a few specific cases, it is possible to analyze and understand completely the
geometric properties of ghost terms. But this is limited to very specific situations.

REMARK 2.5. As we have seen, the Wigner-Ville representation is “optimal” for linear
chirps, in terms of time-frequency localization. It is worth mentioning that other classes of
bilinear time-frequency representations have been proposed, which are optimal for some spe-
cific frequency modulations. More generally, bilinear time-frequency representations may be
designed which enforce specific properties (optimal energy localization for given frequency
modulations, positivity, unitarity,...) We refer to [6,9] for a detailed account of recent contri-
butions in that area.

2.3. Estimation

The practical problem is often that of estimating the spectral characteristics of a function or
a process from one or a few realizations. The simplest estimators are the sample estimators:
for example, givenN independent realizationsX(1); : : :X(N) of the time series, consider
(throughout this paper, we use the notation “~x” to denote an estimator for the quantity “x”,



60 B. Torrésani / Time-Frequency and Time-Scale Analysis

reserving the notation “̂x” –more standard in the statistics literature–to denote Fourier trans-
form)

~EX(b; !) = 1

N

NX
n=1

Z
Xb+�=2Xb��=2e

�i!�d� :(13)

In addition, real data are most often discrete and of finite length, so that the integral defining
~EX(b; !) in (13) has to be replaced with a finite sum. The limits of the estimator as the
sample length and the sampling frequency increase are an important issue. For the sake of
simplicity, we shall not address those technical issues here. We just notice that such sample
estimators generally turn out to have a large variance and poor smoothness. Therefore, one
generally turns to smoothed versions (see the discussions in [9] for example). We shall see
below that the use of wavelet or Gabor transforms provides examples of such smoothings.
A more general class of smoothings of the Wigner-Ville function has been introduced by L.
Cohen, and is known as theCohen’s class. See [6,9] for a detailed account.

3. Approximating Bilinear Representations

Let us now address a slightly different point of view, and discuss somewhat simpler objects,
namely the so-calledlinear time-frequency representations. As we shall see, such repre-
sentations may be seen as alternatives to the bilinear representations we just described, but
also as approximations. The simplest examples of such linear transforms are the continuous
wavelet and Gabor transforms, which we describe now. However, several variants have been
proposed, which we shall briefly discuss later.

3.1. Windowed Fourier Transform and Wavelet transform

We describe here the simplest two examples of time-frequency linear decompositions. We
first focus on the case of continuous transforms, and postpone the description of the dis-
cretization problem to a subsequent section. We first describe the deterministic situation.

The simplest localized version of Fourier analysis is provided by the windowed Fourier
transform, where the main idea is to localize the signal first by multiplying it by a smooth
and localized window, and then perform a Fourier transform. More precisely, the construction
goes as follows. Start from a functiong 2 L2(R) such thatjjgjj 6= 0, and associate with it the
following family of Gaborlets

g(b;!)(t) = ei!(t�b)g(t� b) :(14)

DEFINITION 3.1. Let g 2 L2(R) be a window. The continuous Gabor transform of a
finite-energy signalf 2 L2(R) is defined by the integral transform

Gf(b; !) = hf; g(b;!)i =
Z
f(t) g(t� b)e�i!(t�b) dt :(15)

Gaborlets yield decomposition formulas for functions inL2(R), as follows.

THEOREM 3.2. Let g 2 L2(R) be a non trivial window (i.e.,jjgjj 6= 0). Then every
f 2 L2(R) admits the decomposition

f(t) =
1

2�jjgjj2
Z 1

�1

Z 1

�1

Gf (b; !)g(b;!)(t)dbd! ;(16)

where equality holds in the weakL2(R) sense.

In other words, the mapping

L2(R) 3 f ,! 1

jjgjjp2�
Gf 2 L2(R2)
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FIGURE 2. Example of a frequency modulated signal, with periodic frequency mod-
ulation (left top plot). The power spectrum (right top plot) exhibits a main frequency
and a few harmonics and subharmonics. A Gabor transform with a wide band win-
dow (left bottom) exhibits the frequency modulation, while a Gabor transform with a
narrow band window (right bottom) reproduces the harmonic structure of the signal.
The window was a Gaussian function, with two different scales.

is an isometry betweenL2(R) andL2(R2).
The Gabor transform of a signal gives indications of its “time-frequency content”. Un-

like the Wigner transform, it does not have sharp localization properties for specific fre-
quency modulations (this is due to the fact that the Gabor transform is closely related to a
smoothing of the Wigner transform). Nevertheless, it may be used to study frequency mod-
ulations. For example, consider a function of the formf(t) = A(t)ei�(t), and assume that
A 2 C1(R), � 2 C2(R), and that bothA(t) and�0(t) are slowly varying. Then, it fol-
lows directly from Taylor’s formula thatGf(b; !) = A(b)ei�(b)ĝ(�0(b)� !)+R(b; !), where
jR(b; !)j = O(jA0j; j�00j). Therefore, ifg(t) is a smooth function whose Fourier transform
is peaked at the origin of frequencies, and assuming thatR(b; !) is small enough to be ne-
glected in a first order approximation,jGf(b; !)j is peaked near a curve (the so-calledridge)
of equation! = �0(b), which reproduces the frequency modulation of the signal.

An example of such time-frequency localization is given in Figure 2, for the case of a
periodically frequency modulated signal. This illustrates the two main features of the Gabor
transform. The left bottom image is a gray level representation of the modulus of the Gabor
transform, in the case where the windowg(t) (here a Gaussian window) is “local enough”;
such windows allow us to “see” the changes in the frequencies of the signal, thereby giving a
meaning to the notion of “local frequency”. To obtain such local quantities, we have to give up
frequency resolution, i.e., the localization near the ridge is not as sharp as one would naively
expect. This is especially clear on the right bottom image of Figure 2, where a “narrow band
window” (again a Gaussian function) has been used. In that case, the window is not enough
local, and cannot carefully analyze the frequency changes. However, it is extremely precise
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in the frequency domain, and reproduces the harmonics and subharmonics which appear in
the Fourier spectrum with great precision.

An alternative to the Gabor transform was proposed more recently by Grossmann and
Morlet [11]. The main idea was to improve the time resolution of the Gabor transform,
by changing the rule for generating the “basis functions”. This may be done by replac-
ing the modulation operation used to generate Gaborlets by a scaling operation. Let 2
L1(R) \ L2(R) be a fixed function (in fact, it is sufficient to assume 2 L1(R), but for
convenience also assume that 2 L2(R). This extra assumption ensures the boundedness
of the wavelet transform). From now on it will be called theanalyzing wavelet. It is also
sometimes called themother waveletof the analysis. The corresponding family of wavelets
is the familyf (b;a); b 2 R; a 2 R

�
+g of shifted and scaled copies of defined as follows: If

b 2 R anda 2 R
�
+ we set:

 (b;a)(t) =
1

a
 

�
t� b

a

�
; t 2 R :(17)

The wavelet (b;a) can be viewed as a copy of the original wavelet rescaled bya and cen-
tered around the “time”b. Given an analyzing wavelet , the associated continuous wavelet
transform is defined as follows

DEFINITION 3.3. Let  2 L1(R) \ L2(R) be an analyzing wavelet. The continuous
wavelet transform (CWT for short) of a finite-energy signalf(t) is defined by the integral:

Tf(b; a) = hf;  (b;a)i = 1

a

Z
f(t) 

�
t� b

a

�
dt :(18)

Like Gaborlets, wavelets may form complete sets of functions inL2(R), and we have in
particular

THEOREM 3.4. Let 2 L1(R) \ L2(R), be such that the numberc defined by:

c =

Z 1

0

j ̂(a�)j2da
a

(19)

is finite, nonzero and independent of� 2 R. Then everyf 2 L2(R) admits the decomposition

f(t) =
1

c 

Z 1

�1

Z 1

0

Tf (b; a) (b;a)(t)
da

a
db ;(20)

where the convergence holds in the strongL2(R) sense.

In particular, we also have “energy conservation”: iff 2 L2(R), thenTf 2 L2(R �
R
�
+ ; db

da
a
), andjjTf jj2 = c jjf jj2. Notice that in (19) the constantc can only depend on the

sign of � 2 R. Therefore, independence wrt� is a simple symmetry assumption. The fact
that0 < c < 1 implies that ̂(0) = 0, so that the wavelet (t) has to oscillate enough to
be of zero mean.

Wavelet analysis may be used as a time-frequency analysis method, though in a slightly
different way. To see that, let us consider again the same example as before:f(t) =
A(t)ei�(t), with A 2 C1(R), � 2 C2(R), and bothA(t) and�0(t) are slowly varying. With

the same arguments as before, we obtainTf (b; a) = A(b)ei�(b) ̂(a�0(b)) + R(b; a), where
jR(b; !)j is again controlled by the speed of variation ofA and�0. Assuming that (t) is a
smooth function whose Fourier transform is peaked at a particular frequency!0 (by definition
of a wavelet,!0 6= 0), and assuming thatR(b; a) is small enough to be neglected,jTf (b; a)j
is peaked near a curve (theridge of the wavelet transform) of equationa = !0=�

0(b), which
again reproduces the frequency modulation of the signal, in a slightly different way (multi-
plicative instead of additive).
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FIGURE 3. Continuous wavelet transform of the frequency modulated signal of Figure 2.

There is a major difference between wavelet systems and Gaborlet systems: Gaborlets
are functions ofconstant size, andvariable shape, while wavelets haveconstant shape, and
variable size. An illustration of this fact may be seen in Figure 3, where we display the
wavelet transform modulus of the frequency modulated signal analyzed in Figure 2. The
wavelets have sharp frequency localization at low frequencies, and sharp time localization
at high frequencies. Therefore, wavelets analyze this particular signal as follows: at low
frequencies the time resolution is not good enough to capture the frequency changes, but
the frequency resolution is extremely good, and the analysis exhibits clearly the fundamental
frequency of the signal. At higher frequencies the wavelets have smaller support, and exhibit
time dependent frequencies.

REMARK 3.5. Figures 2 and 3 exhibit striking differences between wavelets and Gabor-
lets, and open the problem of selecting the “best” representation for a given signal. We shall
address this problem briefly in a subsequent section.

REMARK 3.6. Time-frequency analysis is certainly not the main application of wavelet
analysis. Wavelets are particularly well adapted to all problems which present some scale
invariance properties. A good illustration is provided by the characterization of singularities
and its applications to multifractal analysis (see e.g. [3] for a review). More practical ap-
plications include the characterization of long range correlations in1=f -type processes. We
shall see a few examples below.

3.2. Weighted spectra of second order random time series, and sample estimates

Wavelet transforms and Gabor transforms may yield alternatives to the Wigner function,
i.e. bilinear time-frequency (or time-scale) representations. We shall use the generic term
weighted spectrafor alternatives obtained in such ways. Let us consider a second order
random time seriesfXt; t 2 Rg. Its continuous Gabor transform is defined analogously
to (15), as thetime-frequency series

GX(b; !) = hX; g(b;!)i :(21)

Similarly, one introduces the continuous wavelet transform offXt; t 2 Rg by

TX(b; a) = hX; (b;a)i :(22)

It may be proved that this defines a second order stochastic processes. This motivates the
following definition:

DEFINITION 3.7. LetfXt; t 2 Rg be a second order time series.
1. Let g 2 L2(R), normalized so thatjjgjj = 1. TheGabor spectrumof the time series
fXt; t 2 Rg is defined by

E (G)X (b; !) = E
�jGX(b; !)j2

	
:(23)
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2. Let  2 L1(R) be a wavelet, normalized so thatjj jj = 1. Thewavelet spectrumof
the process is defined by

E (W )
X (b; a) = E

�jTX(b; a)j2	 :(24)

Notice that in the particular case of (weakly) stationary time series, these quantities do
not depend onb anymore (like the Wigner spectrum).

REMARK 3.8. For a given windowg 2 L2(R), jjgjj 6= 0, the Gaborletsg(b;!)(t) form a
complete set inL2(R). Therefore, the covarianceC of a second order time series is completely
characterized by the matrix elementshCg(b;!); g(b0;!0)i. However, we have by definition

E (G)X (b; !) = hCg(b;!); g(b;!)i :
Therefore, one cannot expect to characterizeC by its Gabor spectrumunless the “matrix”
hCg(b;!); g(b0;!0)i is sharply localized near its diagonal.The time series for which such a prop-
erty holds true may be termed “locally stationary”, and Gabor analysis may be used to
study them. Such time series have been considered by several authors in the literature. See
e.g. [14,16,17].

A similar remark holds when Gaborlets are replaced with wavelets. The class of time
series which are well characterized by the wavelet spectrum is different however, and basi-
cally corresponds to time series whose covariance has a simple behavior under rescalings
and translations. We shall see some examples below.

The simplest estimators for weighted spectra are again the sample estimators. Let us
consider, for example, the wavelet case. LetX(1); : : :X(N) beN independent realizations of
the time seriesfXt; t 2 Rg, let 2 L1(R) \ L2(R) be a wavelet such thatjj jj = 1, and set

~E (W )(b; a) =
1

N

NX
n=1

jTX(n)(b; a)j2 :(25)

Similarly, if g 2 L2(R) is such thatjjgjj = 1, we set

~E (G)(b; !) = 1

N

NX
n=1

jGX(n)(b; !)j2(26)

We shall see below that such estimators may be used as estimators for the Wigner-Ville spec-
trum, or even of the usual power spectrum in the stationary case (in which case they are
close to classical Welsh-Bartlett estimators). This generally leads to biased, but smoother,
estimates.

3.3. Weighted spectra as approximations

We have seen in the previous subsection how wavelet or Gabor transforms may be used
to introduce local versions of power spectra. The following result is well known (see for
example [9]) and follows from a simple calculation

PROPOSITION3.9. Let fXt; t 2 Rg be a second order time series, and letEX andE (G)X

denote respectively its Wigner spectrum and its Gabor spectrum. Then we have the following

E (G)(b; !) = 1

2�

Z
EX(b0; !0)Eg(b0 � b; !0 � !) db0d!0(27)

whereEg(b; !) is the Wigner function of the windowg(t). A similar result holds true in the
case of the wavelet spectrum:

E (W )(b; a) =
1

2�

1

a

Z
EX(b + a�; !=a)E (�; !) d� d! :(28)
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This shows that the two weighted spectra we have described above may be seen as approx-
imations, or smoothings, of the Wigner-Ville spectrum. The corresponding sample estimators
may therefore be expected to be smoother than the sample estimator given in (13).

The case of weakly stationary second order random time series is an interesting particular
case. LetfXt; t 2 Rg be such a stationary time series. Then one easily verifies that

� The random time seriesfGx(b; !); b 2 Rg andfTX(b; a); b 2 Rg are second order,
weakly stationary, random time series.

� The two weighted spectraE (W )(b; a) andE (G)(b; !) are, respectively, functions ofa and
! only.

This suggests to modify the sample estimators by smoothing with respect to theb variable
to improve their smoothness. Cases using the simplest smoothing, for example

~E (G)(!) =
1

B

Z b0+B=2

b0�B=2

~E (G)(b; !)db ;(29)

~E (W )(a) =
1

B

Z b0+B=2

b0�B=2

~E (W )(b; a)db ;(30)

whereB andb0 are fixed parameters, have been studied in [4]. In particular, one easily shows
that

E

n
~E (G)(!)

o
= E

n
~E (G)(b; !)

o
=

1

2�

Z
E(!0)jĝ(! � !0)j2 d!0 ;(31)

E

n
~E (W )(a)

o
= E

n
~E (W )(b; a)

o
=

1

2�

Z
E(!)j ̂(a!)j2 d!(32)

This shows that the two estimators~E (G)(!) and ~E (W )(a) yield smoothed versions of the power
spectrumE(!), the smoothing being a standard convolution in the Gabor case and a multi-
plicative convolution in the wavelet case.

REMARK 3.10. Notice that the estimator~E (G)(!) is very much in the spirit of the so-
calledWelsh-Bartlett estimator, a standard tool for spectral estimation. The Welsh-Bartlett
estimator is obtained by computing local (tapered) periodograms of the signal, and then
taking the average of these local spectra. This is basically what the averaged Gabor spectral
estimator~E (G)(!) does. The averaged wavelet estimator~E (W )(a) (which may be seen as a
spectral estimator by considering the scale as an inverse frequency variable) does a similar
job, the difference being that the window size changes proportionally to the inverse of the
frequency (the higher the frequency, the smaller the window). Examples of spectral estimation
are presented in Section 4 below.

3.4. Adaptive Decompositions

We have seen that different types of weighted spectra are adapted to different types of time
series, i.e., different types of covariances. In practice, the covariance is not known, and has to
be estimated from one or a few realizations of the time series. In such a context the choice of
the method, or say the choice of the windowg(t) in the Gabor case, is not innocuous. Several
approaches have been proposed to solve such problems (see, for example, [14, 16]). In most
cases the objective is to find the decomposition which make the corresponding weighted
spectrum “as diagonal as possible”. Such a requirement may be realized in different ways.

Let us describe here the solution proposed in [14], in a slightly more general context
than in [14]. Let us assume that we are given a family of functions (for example wavelets,
or Gaborlets, or more general functions), denoted byL = f �; � 2 �g, where� is some
measure space, normalized so thatjj �jj = 1 for all � 2 �. Assume further that there exists
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an associated reproducing formula: there exists a measured� on� such that8f 2 L2(R),

f =

Z
�

hf;  �i �d�(�)(33)

weakly inL2(R). Continuous Gabor and wavelet transforms provide examples of such re-
producing formulas. Other examples have been studied, in particular in [12,18].

Let C be the covariance of a second order time seriesfXt; t 2 Rg, and consider the
generalized weighted spectrum

E (L)(�) = E
�jhX; �ij2	 = hC �;  �i :(34)

Let us write
C � = E (L)(�) � + r�

wherer� is some remainder such thatr� ?  �. In order to “almost diagonalize” the co-
varianceC, a possible approach amounts to makingjjr�jj as small as possible for all�. The
solution proposed in [14] amounts to searching for the optimal decompositionL by solving

Lopt = argmin
L

Z
jjr�jj2 d�(�):(35)

This program may be justified in the following situation:

PROPOSITION3.11. Assume thatC is Hilbert-Schmidt (i.e.jjCjj2HS = Tr(C�C) < 1).
Then

R jjr�jj2 d�(�) = jjCjj2HS � jjE (L)jj2L2(�), and problem (35) is equivalent to

Lopt = argmax
L
jjE (L)jj2L2(�)(36)

The proposition follows from a simple calculation. The fact thatE (L) 2 L2(�) is also
verified directly from the reproducing formula (33).

This program has been carried out by W. Kozek in [14] in the particular case of Gaborlets.
The familiesL are families of GaborletsL = Lg = fg(b;!); b; ! 2 Rg with different window
functionsg(t), jjgjj = 1. In that particular case it may be shown that the “optimal window” is
that one which maximizes the scalar products of the square moduli of the ambiguity functions
of the time seriesjAX j2 and of the windowjAgj2, i.e. the problem (35) becomes

gopt = arg max
g2L2(R);jjgjj=1

jjE (G)jj2L2(R2) = arg max
g2L2(R);jjgjj=1

hjAX j2; jAgj2i(37)

This provides a simple interpretation to this problem, in the light of the example of Figure 2:
the optimization searches a window whose spreading in the time-frequency domain matches
best that of the time series.

More generally, there is no reason for a time series to be well described by constant size
Gaborlets, even if the time series may be considered locally stationary. This implies that most
of the time it is not sufficient to limit oneself to Gaborlets, and the decomposition has to be
looked for in larger families. Examples have been studied e.g. in [12,18]. Another approach
may be found in [16], in a different context which we briefly mention now.

3.5. Remark: Discretization, and Adaptive Spectral Decomposition

So far we have limited our analysis to the case of time series defined for continuous time,
and considered only continuously labeled decompositions. In practice, one clearly needs to
develop discrete analogs of these techniques.

Discretizations of the continuous time-frequency decompositions have been discussed in
several places (see, for example, [4, 5, 7, 13, 22]). The first main result (existence of wavelet
and Gabor frames, see, for example, [7]) is that the continuous formulae in (16) and (20) may
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be discretized without introducing important distortions, as long as the discretization step is
small enough. By doing so, one generally keeps some redundancy in the decompositions.

However, it is desirable in some contexts to go further and get rid of redundancy as much
as possible, and in particular use (orthonormal) bases when possible. This is the case in par-
ticular for all applications related to signal compression. As we have seen above, the optimal
representation, in terms of reduction of variance, is the Karhunen-Loeve decomposition (see
equation (1)). However, we have stressed already at the beginning of Section 2 that such
decompositions may sometimes be of poor interest in practice. A possible alternative, in the
spirit of our previous discussion, amounts to looking for the “optimal basis decomposition”
within a library of bases, generated in a simple and systematic way. This best basis para-
digm, proposed by Coifman and Wickerhauser first and developed systematically since then
(see in particular [22]), has been applied recently by Mallat, Papanicolaou and Zhang in [16]
for constructing approximate spectral decompositions for locally stationary processes. The
construction makes use of thelocal trigonometric bases, which may be understood as (gen-
eralized) bases of Gaborlets. We refer to [16] for the details, and to [8] for an alternative
approach.

4. Examples

We have seen in the previous section how time-frequency or time-scale transforms may be
used to build spectral estimators, adapted to stationary or non-stationary situations. We now
illustrate the ideas with a couple of examples of spectral estimation based upon wavelet and
Gabor transforms. Our purpose isnot to provide a systematic comparison of estimation
techniques in a variety of situations. We just present two situations for which the methods we
just explained are well adapted.

It is readily seen from equation (31) that ifE(!) = Ce��! for some constants�; C, and

if g(t) is chosen in such a way thatK = 1
2�

R
e��!jĝ(!)j2d! < 1, thenE

n
~E (G)(!)

o
=

KE(!). Of course, such a choice forE(!) is not suitable for the spectral density of a station-
ary time series. However, ifE(!) � e��! within a given frequency domain, we may expect
~E (G)(!) to provide an unbiased estimation ofE(!) within this frequency domain.

Figure 4 is an illustration of this case. We consider an example of discrete (weakly station-
ary) time series, whose spectral density is a decaying exponential function of the frequency:

E(!) = expf��j!jg ;
for �� � ! � �. In such a case one expects~E (G) to provide a good estimation, except
perhaps in the neighborhood of the origin of frequencies.

In the example,� has been set to� = 2. A standard periodogram-based estimation
(shown in the right top plot of the figure) followed by a linear regression yields an estimate
~� = 2:0059. A part of the Gabor spectrum~E (G)(b; !) is represented in the left bottom figure,
and the correspondingb-averaged version~E (G)(!) is displayed in the right bottom plot. The
estimate for� obtained in this case was~� = 2:003. Several simulations in the same “experi-
mental” situations have shown that the Gabor estimate has a variance about twice smaller than
the estimate based on the periodogram. This is not surprising, for we have already remarked
on the similarity of this approach with the Welsh-Bartlett estimator, which was introduced
for that purpose.

Our second example illustrates the behavior of wavelet-based spectral estimation. As we
have remarked already, the wavelet spectrum is more adapted to time series whose covariance
possesses some scale invariance properties. This is the case for fractional Brownian motion,
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FIGURE 4. Example of spectral estimation using the Gabor spectrum. The signal
(left top plot) is a Gaussian process, whose spectral density is an exponential function
of the frequency. The logarithm of the periodogram estimate of the spectral density
is shown in the right top plot, superimposed with a regression line. The (estimated)
Gabor spectrum (on a small part of the signal) is displayed as a surface plot in the
left bottom figure, and its average with respect to the time variable is presented in the
right bottom plot, together with a corresponding regression line.

which we now consider. Fractional Brownian motion (fBm) of Hurst exponenth is a Gaussian
processfXt; t 2 Rg with zero mean and covariance

E fXtXsg = �2

2

�jtj2h + jsj2h � jt� sj2h	 :

This is an interesting example of a non stationary process. It has received great attention
lately because it exhibits long range correlations, a phenomenon which has been observed
in various contexts. However, it is known that because of these long range correlations, the
estimation of the Hurst exponenth (and the variance parameter�) is a difficult task, for
sample estimators turn out to have a large variance.

Remarkably enough, the fixed-scale wavelet transformfTX(b; a); b 2 Rg of such a time
series is a weakly stationary time series, so that the discussion of the previous section may
be extended to the present situation. We show how the wavelet spectrum we described in the
previous section may be used for estimatingh from a single realization.

We illustrate it with one realization, with Hurst exponenth = 0:2. Figure 5 shows the
realization of the time series (left top plot), together with a periodogram-based estimation.
As can be seen from the right top plot, the lack of smoothness of the periodogram makes it
difficult to estimate the Hurst exponent. This is to be compared with the right bottom plot,
representing the (logarithm of the) wavelet spectrum~E (W )(a). For such processes, it may be
shown (see, for example, [4]) that

E

n
~E (W )(a)

o
� a2h ;
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FIGURE 5. Example of spectral estimation using the wavelet spectrum. The signal
(left top plot) is a realization of a fractional Brownian motion, with Hurst exponent
h = :2. The logarithm of the periodogram estimate of the spectral density is shown
in the right top plot, superimposed with a regression line. The (estimated) wavelet
spectrum (on a small part of the signal) is displayed as a surface plot in the left bottom
figure, and its average with respect to the time variable is presented in the right bottom
plot, together with a corresponding regression line.

as soon as (t) has been chosen in such a way that
R j!j2h�1j ̂(!)j2 d! < 1, so that a

linear regression on alog-log plot of the wavelet spectrum directly provides an estimate
for the exponent. In our case the estimate was~h = 0:196 (notice that, as in the case of
the periodogram, all the scales could not be used, the smallest scales being corrupted by
additional noise).

Such methods have been carefully analyzed (see e.g. [1, 4]). In particular, P. Abry has
shown that estimators of the type we are considering are unbiased and of minimal variance.

5. Conclusions

We have described a series of methods designed to provide simple representations of de-
terministic and random signals, emphasizing the so-calledtime-frequency methods. Besides
more sophisticated tools such as Wigner’s functions and its generalizations, we have shown
that simple decompositions such as Gabor or wavelet transforms yield efficient algorithms, in
particular for spectral estimation. These two particular methods are well adapted to specific
situations, and extensions to more general contexts require using more general (adaptive)
decomposition methods.

The illustrations of this papers have been generated using theSwave package developed
by R. Carmona, W.L. Hwang and the author (see [4]).Swave (based on theSplus environ-
ment), is available by anonymousftp at the site:

http://soil.princeton.edu/ rcarmona

and documented in [4].
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